File size: 5,830 Bytes
2c5eb00
 
b758b54
9d19b68
6265b51
7124b11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c5eb00
 
 
 
 
 
7124b11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14d2652
12dcab4
599f85f
4bd0321
 
 
 
 
2c5eb00
7124b11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112197d
 
 
12dcab4
7124b11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12dcab4
2c5eb00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer
from llava.model.language_model.llava_mistral import LlavaMistralForCausalLM
from llava.model.builder import load_pretrained_model
from llava.mm_utils import (
    process_images,
    tokenizer_image_token,
    get_model_name_from_path,
)
from llava.constants import (
    IMAGE_TOKEN_INDEX,
    DEFAULT_IMAGE_TOKEN,
    DEFAULT_IM_START_TOKEN,
    DEFAULT_IM_END_TOKEN,
    IMAGE_PLACEHOLDER,
)
from llava.conversation import conv_templates, SeparatorStyle




"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

# Functions for inference
def image_parser(args):
    out = args.image_file.split(args.sep)
    return out


def load_image(image_file):
    if image_file.startswith("http") or image_file.startswith("https"):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert("RGB")
    else:
        image = Image.open(image_file).convert("RGB")
    return image


def load_images(image_files):
    out = []
    for image_file in image_files:
        image = load_image(image_file)
        out.append(image)
    return out

model_path = "liuhaotian/llava-v1.6-mistral-7b"
model_name = get_model_name_from_path(model_path)
# tokenizer = AutoTokenizer.from_pretrained(model_path)
# model = LlavaMistralForCausalLM.from_pretrained(
#                     model_path,
#                     low_cpu_mem_usage=True,
#                     # offload_folder="/content/sample_data"
#                 )

prompt = "What are the things I should be cautious about when I visit here?"
image_file = "https://llava-vl.github.io/static/images/view.jpg"

args = type('Args', (), {
    "model_path": model_path,
    "model_base": None,
    "model_name": get_model_name_from_path(model_path),
    "query": prompt,
    "conv_mode": None,
    "image_file": image_file,
    "sep": ",",
    "temperature": 0,
    "top_p": None,
    "num_beams": 1,
    "max_new_tokens": 512
})()


tokenizer, model, image_processor, context_len = load_pretrained_model(
        model_path, None, model_name
    )

qs = args.query
image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
if IMAGE_PLACEHOLDER in qs:
    if model.config.mm_use_im_start_end:
        qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs)
    else:
        qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs)
else:
    if model.config.mm_use_im_start_end:
        qs = image_token_se + "\n" + qs
    else:
        qs = DEFAULT_IMAGE_TOKEN + "\n" + qs

if "llama-2" in model_name.lower():
    conv_mode = "llava_llama_2"
elif "mistral" in model_name.lower():
    conv_mode = "mistral_instruct"
elif "v1.6-34b" in model_name.lower():
    conv_mode = "chatml_direct"
elif "v1" in model_name.lower():
    conv_mode = "llava_v1"
elif "mpt" in model_name.lower():
    conv_mode = "mpt"
else:
    conv_mode = "llava_v0"

if args.conv_mode is not None and conv_mode != args.conv_mode:
    print(
        "[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format(
            conv_mode, args.conv_mode, args.conv_mode
        )
    )
else:
    args.conv_mode = conv_mode

conv = conv_templates[args.conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()

image_files = image_parser(args)
images = load_images(image_files)
image_sizes = [x.size for x in images]
images_tensor = process_images(
    images,
    image_processor,
    model.config
).to(model.device, dtype=torch.float16)

input_ids = (
    tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
    .unsqueeze(0)
    .cuda()
)

with torch.inference_mode():
    output_ids = model.generate(
        input_ids,
        images=images_tensor,
        image_sizes=image_sizes,
        do_sample=True if args.temperature > 0 else False,
        temperature=args.temperature,
        top_p=args.top_p,
        num_beams=args.num_beams,
        max_new_tokens=args.max_new_tokens,
        use_cache=True,
    )

outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
print(outputs)
# End Llava inference



def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()