Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pickle | |
import pandas as pd | |
import joblib | |
from tensorflow.keras.models import load_model | |
# Load your pre-trained model | |
model = load_model('/content/best_model.h5') | |
# Define the prediction function | |
def predict(age, job, marital, education, default, balance, housing, loan, contact, day, month, duration, campaign, pdays, previous, poutcome): | |
# Define the expected input order and preprocess accordingly | |
columns = [ | |
'age', 'job', 'marital', 'education', 'default', 'balance', 'housing', | |
'loan', 'contact', 'day', 'month', 'duration', 'campaign', 'pdays', | |
'previous', 'poutcome' | |
] | |
# Prepare the input values | |
data = [ | |
age, job, marital, education, default, balance, housing, loan, | |
contact, day, month, duration, campaign, pdays, previous, poutcome | |
] | |
# Convert to DataFrame | |
df = pd.DataFrame([data], columns=columns) | |
# Preprocess: One-hot encode categorical features (simulating as example) | |
# Normally, ensure you replicate the preprocessing steps used during training | |
df_processed = pd.get_dummies(df) | |
# Align processed DataFrame with model input (add missing columns if any) | |
model_columns = model.feature_names_in_ # Assuming the model has this attribute | |
for col in model_columns: | |
if col not in df_processed: | |
df_processed[col] = 0 | |
df_processed = df_processed[model_columns] | |
# Predict | |
prediction = model.predict(df_processed)[0] | |
return "Yes" if prediction == 1 else "No" | |
# Define Gradio interface | |
inputs = [ | |
gr.Number(label="Age"), | |
gr.Dropdown(['management', 'technician', 'entrepreneur', 'blue-collar', 'unknown', 'retired', 'admin.', 'services', 'self-employed', 'unemployed', 'student', 'housemaid'], label="Job"), | |
gr.Dropdown(['married', 'single', 'divorced'], label="Marital Status"), | |
gr.Dropdown(['primary', 'secondary', 'tertiary', 'unknown'], label="Education"), | |
gr.Dropdown(['yes', 'no'], label="Default"), | |
gr.Number(label="Balance"), | |
gr.Dropdown(['yes', 'no'], label="Housing Loan"), | |
gr.Dropdown(['yes', 'no'], label="Personal Loan"), | |
gr.Dropdown(['unknown', 'telephone', 'cellular'], label="Contact"), | |
gr.Number(label="Day"), | |
gr.Dropdown(['jan', 'feb', 'mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec'], label="Month"), | |
gr.Number(label="Duration"), | |
gr.Number(label="Campaign"), | |
gr.Number(label="Pdays"), | |
gr.Number(label="Previous"), | |
gr.Dropdown(['unknown', 'other', 'failure', 'success'], label="Poutcome") | |
] | |
output = gr.Textbox(label="Subscription Prediction") | |
gui = gr.Interface(fn=predict, inputs=inputs, outputs=output, title="Term Deposit Subscription Prediction") | |
gui.launch() | |