Spaces:
Configuration error
Configuration error
# EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction | |
# Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han | |
# International Conference on Computer Vision (ICCV), 2023 | |
import os | |
import torch | |
import torch.distributed | |
from efficientvit.models.utils.list import list_mean, list_sum | |
__all__ = [ | |
"dist_init", | |
"get_dist_rank", | |
"get_dist_size", | |
"is_master", | |
"dist_barrier", | |
"get_dist_local_rank", | |
"sync_tensor", | |
] | |
def dist_init() -> None: | |
try: | |
torch.distributed.init_process_group(backend="nccl") | |
assert torch.distributed.is_initialized() | |
except Exception: | |
# use torchpack | |
from torchpack import distributed as dist | |
dist.init() | |
os.environ["RANK"] = f"{dist.rank()}" | |
os.environ["WORLD_SIZE"] = f"{dist.size()}" | |
os.environ["LOCAL_RANK"] = f"{dist.local_rank()}" | |
def get_dist_rank() -> int: | |
return int(os.environ["RANK"]) | |
def get_dist_size() -> int: | |
return int(os.environ["WORLD_SIZE"]) | |
def is_master() -> bool: | |
return get_dist_rank() == 0 | |
def dist_barrier() -> None: | |
torch.distributed.barrier() | |
def get_dist_local_rank() -> int: | |
return int(os.environ["LOCAL_RANK"]) | |
def sync_tensor( | |
tensor: torch.Tensor or float, reduce="mean" | |
) -> torch.Tensor or list[torch.Tensor]: | |
if not isinstance(tensor, torch.Tensor): | |
tensor = torch.Tensor(1).fill_(tensor).cuda() | |
tensor_list = [torch.empty_like(tensor) for _ in range(get_dist_size())] | |
torch.distributed.all_gather(tensor_list, tensor.contiguous(), async_op=False) | |
if reduce == "mean": | |
return list_mean(tensor_list) | |
elif reduce == "sum": | |
return list_sum(tensor_list) | |
elif reduce == "cat": | |
return torch.cat(tensor_list, dim=0) | |
elif reduce == "root": | |
return tensor_list[0] | |
else: | |
return tensor_list | |