Spaces:
Configuration error
Configuration error
# EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction | |
# Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han | |
# International Conference on Computer Vision (ICCV), 2023 | |
import math | |
import torch | |
from efficientvit.models.utils.list import val2list | |
__all__ = ["CosineLRwithWarmup"] | |
class CosineLRwithWarmup(torch.optim.lr_scheduler._LRScheduler): | |
def __init__( | |
self, | |
optimizer: torch.optim.Optimizer, | |
warmup_steps: int, | |
warmup_lr: float, | |
decay_steps: int or list[int], | |
last_epoch: int = -1, | |
) -> None: | |
self.warmup_steps = warmup_steps | |
self.warmup_lr = warmup_lr | |
self.decay_steps = val2list(decay_steps) | |
super().__init__(optimizer, last_epoch) | |
def get_lr(self) -> list[float]: | |
if self.last_epoch < self.warmup_steps: | |
return [ | |
(base_lr - self.warmup_lr) * (self.last_epoch + 1) / self.warmup_steps | |
+ self.warmup_lr | |
for base_lr in self.base_lrs | |
] | |
else: | |
current_steps = self.last_epoch - self.warmup_steps | |
decay_steps = [0] + self.decay_steps | |
idx = len(decay_steps) - 2 | |
for i, decay_step in enumerate(decay_steps[:-1]): | |
if decay_step <= current_steps < decay_steps[i + 1]: | |
idx = i | |
break | |
current_steps -= decay_steps[idx] | |
decay_step = decay_steps[idx + 1] - decay_steps[idx] | |
return [ | |
0.5 * base_lr * (1 + math.cos(math.pi * current_steps / decay_step)) | |
for base_lr in self.base_lrs | |
] | |