Spaces:
Configuration error
Configuration error
# EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction | |
# Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han | |
# International Conference on Computer Vision (ICCV), 2023 | |
import torch | |
from efficientvit.apps.utils.dist import sync_tensor | |
__all__ = ["AverageMeter"] | |
class AverageMeter: | |
"""Computes and stores the average and current value.""" | |
def __init__(self, is_distributed=True): | |
self.is_distributed = is_distributed | |
self.sum = 0 | |
self.count = 0 | |
def _sync(self, val: torch.Tensor or int or float) -> torch.Tensor or int or float: | |
return sync_tensor(val, reduce="sum") if self.is_distributed else val | |
def update(self, val: torch.Tensor or int or float, delta_n=1): | |
self.count += self._sync(delta_n) | |
self.sum += self._sync(val * delta_n) | |
def get_count(self) -> torch.Tensor or int or float: | |
return ( | |
self.count.item() | |
if isinstance(self.count, torch.Tensor) and self.count.numel() == 1 | |
else self.count | |
) | |
def avg(self): | |
avg = -1 if self.count == 0 else self.sum / self.count | |
return avg.item() if isinstance(avg, torch.Tensor) and avg.numel() == 1 else avg | |