Spaces:
Configuration error
Configuration error
# EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction | |
# Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han | |
# International Conference on Computer Vision (ICCV), 2023 | |
import torch | |
__all__ = ["REGISTERED_OPTIMIZER_DICT", "build_optimizer"] | |
# register optimizer here | |
# name: optimizer, kwargs with default values | |
REGISTERED_OPTIMIZER_DICT: dict[str, tuple[type, dict[str, any]]] = { | |
"sgd": (torch.optim.SGD, {"momentum": 0.9, "nesterov": True}), | |
"adam": (torch.optim.Adam, {"betas": (0.9, 0.999), "eps": 1e-8, "amsgrad": False}), | |
"adamw": ( | |
torch.optim.AdamW, | |
{"betas": (0.9, 0.999), "eps": 1e-8, "amsgrad": False}, | |
), | |
} | |
def build_optimizer( | |
net_params, optimizer_name: str, optimizer_params: dict or None, init_lr: float | |
) -> torch.optim.Optimizer: | |
optimizer_class, default_params = REGISTERED_OPTIMIZER_DICT[optimizer_name] | |
optimizer_params = optimizer_params or {} | |
for key in default_params: | |
if key in optimizer_params: | |
default_params[key] = optimizer_params[key] | |
optimizer = optimizer_class(net_params, init_lr, **default_params) | |
return optimizer | |