Spaces:
Sleeping
Sleeping
import streamlit as st | |
from streamlit_drawable_canvas import st_canvas | |
from PIL import Image, ImageDraw, ImageFont | |
import numpy as np | |
import json | |
import io | |
from datetime import datetime | |
import os | |
def initialize_session_state(): | |
"""Initialize session state variables""" | |
if "annotations" not in st.session_state: | |
st.session_state["annotations"] = [] | |
if "current_tool" not in st.session_state: | |
st.session_state["current_tool"] = "rect" | |
if "annotation_history" not in st.session_state: | |
st.session_state["annotation_history"] = [] | |
if "is_authenticated" not in st.session_state: | |
st.session_state["is_authenticated"] = False | |
def authenticate_user(): | |
"""Handle user authentication""" | |
st.title("π₯ Alyse AI Prescription Annotation Tool") | |
if not st.session_state["is_authenticated"]: | |
with st.form("login_form"): | |
st.write("Please enter your credentials to access the tool.") | |
username = st.text_input("Username:") | |
password = st.text_input("Password:", type="password") | |
submit = st.form_submit_button("Login") | |
if submit: | |
if username == "alyse" and password == "pharmacie": | |
st.session_state["is_authenticated"] = True | |
st.success("β Access granted! You can now use the application.") | |
st.rerun() | |
else: | |
st.error("β Invalid credentials. Please try again.") | |
return False | |
return True | |
def create_sidebar_controls(): | |
"""Create sidebar controls for annotation settings""" | |
st.sidebar.header("π Annotation Controls") | |
# Tool selection | |
tool_options = { | |
"rect": "Rectangle Box", | |
"line": "Line", | |
"circle": "Circle", | |
"freedraw": "Free Draw" | |
} | |
st.session_state["current_tool"] = st.sidebar.radio( | |
"Select Drawing Tool:", | |
options=list(tool_options.keys()), | |
format_func=lambda x: tool_options[x] | |
) | |
# Color selection | |
stroke_color = st.sidebar.color_picker("Stroke Color:", "#0000FF") | |
stroke_width = st.sidebar.slider("Stroke Width:", 1, 10, 2) | |
# Annotation categories | |
annotation_category = st.sidebar.selectbox( | |
"Annotation Category:", | |
["Medication Name", "Dosage", "Frequency", "Duration", "Patient Info", "Doctor Info", "Other"] | |
) | |
return stroke_color, stroke_width, annotation_category | |
def preprocess_image(image): | |
"""Resize image if too large for Streamlit Cloud""" | |
max_size = (800, 800) # Maximum dimensions | |
# Calculate aspect ratio | |
width_ratio = max_size[0] / image.size[0] | |
height_ratio = max_size[1] / image.size[1] | |
resize_ratio = min(width_ratio, height_ratio) | |
# Only resize if image is too large | |
if resize_ratio < 1: | |
new_size = ( | |
int(image.size[0] * resize_ratio), | |
int(image.size[1] * resize_ratio) | |
) | |
return image.resize(new_size, Image.Resampling.LANCZOS) | |
return image | |
def handle_canvas_drawing(image, stroke_color, stroke_width, category): | |
"""Handle canvas drawing with preprocessed image""" | |
processed_image = preprocess_image(image) | |
canvas_result = st_canvas( | |
fill_color="rgba(0, 0, 0, 0)", | |
stroke_width=stroke_width, | |
stroke_color=stroke_color, | |
background_image=processed_image, | |
update_streamlit=True, | |
width=processed_image.size[0], | |
height=processed_image.size[1], | |
drawing_mode=st.session_state["current_tool"], | |
display_toolbar=True, | |
key="canvas", | |
) | |
if canvas_result.json_data: | |
objects = canvas_result.json_data.get("objects", []) | |
for obj in objects: | |
if obj not in [ann.get("object_data") for ann in st.session_state["annotations"]]: | |
new_annotation = { | |
"object_data": obj, | |
"category": category, | |
"text": "", | |
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
} | |
st.session_state["annotations"].append(new_annotation) | |
st.session_state["annotation_history"].append(new_annotation) | |
def display_annotation_list(): | |
"""Display and manage list of annotations""" | |
st.sidebar.subheader("π Current Annotations") | |
for i, annotation in enumerate(st.session_state["annotations"]): | |
with st.sidebar.expander(f"Annotation {i+1} - {annotation['category']}"): | |
# Update annotation text | |
new_text = st.text_area( | |
"Description:", | |
annotation["text"], | |
key=f"text_input_{i}" | |
) | |
st.session_state["annotations"][i]["text"] = new_text | |
# Display annotation details | |
st.write(f"Created: {annotation['timestamp']}") | |
# Delete individual annotation | |
if st.button("Delete", key=f"delete_{i}"): | |
st.session_state["annotations"].pop(i) | |
st.rerun() | |
def load_demo_image(): | |
"""Load demo prescription image""" | |
demo_image_url = "/ordonnance-002.jpeg" | |
return Image.open(requests.get(demo_image_url, stream=True).raw).convert("RGB") | |
def save_annotations(image, uploaded_file): | |
"""Handle saving and downloading annotations""" | |
st.sidebar.subheader("πΎ Save & Export") | |
if st.sidebar.button("Save and Download"): | |
# Create annotated image | |
annotated_image = image.copy() | |
draw = ImageDraw.Draw(annotated_image) | |
# Draw annotations | |
for annotation in st.session_state["annotations"]: | |
obj = annotation["object_data"] | |
if obj["type"] == "rect": | |
draw.rectangle( | |
[obj["left"], obj["top"], | |
obj["left"] + obj["width"], | |
obj["top"] + obj["height"]], | |
outline=obj["stroke"], | |
width=int(obj["strokeWidth"]) | |
) | |
# Add text label | |
draw.text( | |
(obj["left"], obj["top"] - 15), | |
f"{annotation['category']}: {annotation['text']}", | |
fill=obj["stroke"] | |
) | |
# Save files | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
# Save annotated image | |
img_buffer = io.BytesIO() | |
annotated_image.save(img_buffer, format="JPEG", quality=95) | |
img_buffer.seek(0) | |
# Save annotations JSON | |
annotations_data = { | |
"image_id": uploaded_file.name, | |
"timestamp": timestamp, | |
"annotations": [ | |
{ | |
"category": ann["category"], | |
"text": ann["text"], | |
"timestamp": ann["timestamp"], | |
"object_data": ann["object_data"] | |
} | |
for ann in st.session_state["annotations"] | |
] | |
} | |
# Convert JSON to string first, then to bytes | |
json_str = json.dumps(annotations_data, indent=2) | |
json_bytes = json_str.encode('utf-8') | |
json_buffer = io.BytesIO(json_bytes) | |
# Download buttons | |
col1, col2 = st.sidebar.columns(2) | |
with col1: | |
st.download_button( | |
"π· Download Image", | |
data=img_buffer, | |
file_name=f"annotated_{timestamp}.jpg", | |
mime="image/jpeg" | |
) | |
with col2: | |
st.download_button( | |
"π Download JSON", | |
data=json_buffer, | |
file_name=f"annotations_{timestamp}.json", | |
mime="application/json" | |
) | |
st.sidebar.success("β Files saved successfully!") | |
def main(): | |
"""Main application logic""" | |
initialize_session_state() | |
if not authenticate_user(): | |
return | |
if st.button("π Load Demo Prescription"): | |
demo_image = load_demo_image() | |
uploaded_file = demo_image | |
st.success("Demo prescription loaded successfully!") | |
# File upload | |
uploaded_file = st.file_uploader( | |
"π€ Upload Prescription Image", | |
type=["jpg", "jpeg", "png"], | |
help="Upload a clear image of the prescription to annotate" | |
) | |
if uploaded_file: | |
# Load and display image | |
image = Image.open(uploaded_file).convert("RGB") | |
# Create two columns for layout | |
col1, col2 = st.columns([2, 1]) | |
with col1: | |
# Get annotation settings | |
stroke_color, stroke_width, category = create_sidebar_controls() | |
# Handle canvas drawing | |
handle_canvas_drawing(image, stroke_color, stroke_width, category) | |
with col2: | |
# Undo/Redo buttons | |
col_undo, col_redo, col_clear = st.columns(3) | |
with col_undo: | |
if st.button("β©οΈ Undo") and st.session_state["annotations"]: | |
last_annotation = st.session_state["annotations"].pop() | |
st.session_state["annotation_history"].append(last_annotation) | |
with col_redo: | |
if st.button("βͺοΈ Redo") and st.session_state["annotation_history"]: | |
st.session_state["annotations"].append( | |
st.session_state["annotation_history"].pop() | |
) | |
with col_clear: | |
if st.button("ποΈ Clear All"): | |
st.session_state["annotations"] = [] | |
st.session_state["annotation_history"] = [] | |
# Display annotation list | |
display_annotation_list() | |
# Save and download options | |
save_annotations(image, uploaded_file) | |
# Footer | |
st.markdown("---") | |
st.markdown( | |
""" | |
<div style='text-align: center'> | |
<p><strong>Alyse AI Prescription Annotation Tool v2.0</strong></p> | |
<p>Created by: Jad Tounsi El Azzoiani and Amine Tahiri</p> | |
<p>Last Updated: November 2024</p> | |
</div> | |
""", | |
unsafe_allow_html=True | |
) | |
if __name__ == "__main__": | |
st.set_page_config( | |
page_title="Alyse AI Prescription Annotator", | |
page_icon="π₯", | |
layout="wide" | |
) | |
main() |