CS626-CRF / app.py
madhavkotecha's picture
Create app.py
8fa594d verified
raw
history blame
9.96 kB
import nltk
import sklearn_crfsuite
from sklearn_crfsuite import metrics
from nltk.stem import LancasterStemmer
import numpy as np
from sklearn.metrics import confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt
import re
import gradio as gr
lancaster = LancasterStemmer()
class CRF_POS_Tagger:
def __init__(self):
self.corpus = nltk.corpus.brown.tagged_sents(tagset='universal')
self.corpus = [[(word.lower(), tag) for word, tag in sentence] for sentence in self.corpus]
self.actual_tag = []
self.predicted_tag = []
self.prefixes = [
"a", "anti", "auto", "bi", "co", "dis", "en", "em", "ex", "in", "im",
"inter", "mis", "non", "over", "pre", "re", "sub", "trans", "un", "under"
]
self.suffixes = [
"able", "ible", "al", "ance", "ence", "dom", "er", "or", "ful", "hood",
"ic", "ing", "ion", "tion", "ity", "ty", "ive", "less", "ly", "ment",
"ness", "ous", "ship", "y", "es", "s"
]
self.prefix_pattern = f"^({'|'.join(self.prefixes)})"
self.suffix_pattern = f"({'|'.join(self.suffixes)})$"
self.X = [[self.word_features(sentence, i) for i in range(len(sentence))] for sentence in self.corpus]
self.y = [[postag for _, postag in sentence] for sentence in self.corpus]
self.split = int(0.8 * len(self.X))
self.X_train = self.X[:self.split]
self.y_train = self.y[:self.split]
self.X_test = self.X[self.split:]
self.y_test = self.y[self.split:]
self.crf_model = sklearn_crfsuite.CRF(algorithm='lbfgs', c1=0.1, c2=0.1, max_iterations=100, all_possible_transitions=True)
self.train()
def word_splitter(self, word):
prefix = ""
stem = word
suffix = ""
prefix_match = re.match(self.prefix_pattern, word)
if prefix_match:
prefix = prefix_match.group(1)
stem = word[len(prefix):]
suffix_match = re.search(self.suffix_pattern, stem)
if suffix_match:
suffix = suffix_match.group(1)
stem = stem[: -len(suffix)]
return prefix, stem, suffix
# Define a function to extract features for each word in a sentence
def word_features(self, sentence, i):
word = sentence[i][0]
prefix, stem, suffix = self.word_splitter(word)
features = {
'word': word,
'prefix': prefix,
# 'stem': stem,
'stem': lancaster.stem(word),
'suffix': suffix,
'position': i,
'is_first': i == 0, #if the word is a first word
'is_last': i == len(sentence) - 1, #if the word is a last word
# 'is_capitalized': word[0].upper() == word[0],
'is_all_caps': word.isupper(), #word is in uppercase
'is_all_lower': word.islower(), #word is in lowercase
'prefix-1': word[0],
'prefix-2': word[:2],
'prefix-3': word[:3],
'suffix-1': word[-1],
'suffix-2': word[-2:],
'suffix-3': word[-3:],
'prefix-un': word[:2] == 'un', #if word starts with un
'prefix-re': word[:2] == 're', #if word starts with re
'prefix-over': word[:4] == 'over', #if word starts with over
'prefix-dis': word[:4] == 'dis', #if word starts with dis
'prefix-mis': word[:4] == 'mis', #if word starts with mis
'prefix-pre': word[:4] == 'pre', #if word starts with pre
'prefix-non': word[:4] == 'non', #if word starts with non
'prefix-de': word[:3] == 'de', #if word starts with de
'prefix-in': word[:3] == 'in', #if word starts with in
'prefix-en': word[:3] == 'en', #if word starts with en
'suffix-ed': word[-2:] == 'ed', #if word ends with ed
'suffix-ing': word[-3:] == 'ing', #if word ends with ing
'suffix-es': word[-2:] == 'es', #if word ends with es
'suffix-ly': word[-2:] == 'ly', #if word ends with ly
'suffix-ment': word[-4:] == 'ment', #if word ends with ment
'suffix-er': word[-2:] == 'er', #if word ends with er
'suffix-ive': word[-3:] == 'ive',
'suffix-ous': word[-3:] == 'ous',
'suffix-ness': word[-4:] == 'ness',
'ends_with_s': word[-1] == 's',
'ends_with_es': word[-2:] == 'es',
'has_hyphen': '-' in word, #if word has hypen
'is_numeric': word.isdigit(), #if word is in numeric
'capitals_inside': word[1:].lower() != word[1:],
'is_title_case': word.istitle(), #if first letter is in uppercase
}
if i > 0:
# prev_word, prev_postag = sentence[i-1]
prev_word = sentence[i-1][0]
prev_prefix, prev_stem, prev_suffix = self.word_splitter(prev_word)
features.update({
'prev_word': prev_word,
# 'prev_postag': prev_postag,
'prev_prefix': prev_prefix,
'prev_stem': lancaster.stem(prev_word),
'prev_suffix': prev_suffix,
'prev:is_all_caps': prev_word.isupper(),
'prev:is_all_lower': prev_word.islower(),
'prev:is_numeric': prev_word.isdigit(),
'prev:is_title_case': prev_word.istitle(),
})
if i < len(sentence)-1:
next_word = sentence[i-1][0]
next_prefix, next_stem, next_suffix = self.word_splitter(next_word)
features.update({
'next_word': next_word,
'next_prefix': next_prefix,
'next_stem': lancaster.stem(next_word),
'next_suffix': next_suffix,
'next:is_all_caps': next_word.isupper(),
'next:is_all_lower': next_word.islower(),
'next:is_numeric': next_word.isdigit(),
'next:is_title_case': next_word.istitle(),
})
return features
def train(self):
self.crf_model.fit(self.X_train, self.y_train)
def predict(self, X_test):
return self.crf_model.predict(X_test)
def accuracy(self, test_data):
X_test, y_test = zip(*test_data)
y_pred = self.predict(X_test)
self.actual_tag.extend([item for sublist in y_test for item in sublist])
self.predicted_tag.extend([item for sublist in y_pred for item in sublist])
return metrics.flat_accuracy_score(y_test, y_pred)
def cross_validation(self, data):
accuracies = []
for i in range(5):
n1 = int(i / 5.0 * len(data))
n2 = int((i + 1) / 5.0 * len(data))
test_data = data[n1:n2]
train_data = data[:n1] + data[n2:]
self.train(train_data)
acc = self.accuracy(test_data)
accuracies.append(acc)
return accuracies, sum(accuracies) / 5.0
def con_matrix(self):
self.labels = np.unique(self.actual_tag)
conf_matrix = confusion_matrix(self.actual_tag, self.predicted_tag, labels=self.labels)
plt.figure(figsize=(10, 7))
sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=self.labels, yticklabels=self.labels)
plt.xlabel('Predicted Tags')
plt.ylabel('Actual Tags')
plt.title('Confusion Matrix Heatmap')
plt.savefig("Confusion_matrix.png")
plt.show()
return conf_matrix
def per_pos_accuracy(self, conf_matrix):
print("Per Tag Precision, Recall, and F-Score:")
per_tag_metrics = {}
for i, tag in enumerate(self.labels):
true_positives = conf_matrix[i, i]
false_positives = np.sum(conf_matrix[:, i]) - true_positives
false_negatives = np.sum(conf_matrix[i, :]) - true_positives
precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0
recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0
f1_score = (2 * precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
beta_0_5 = 0.5
beta_2 = 2.0
f0_5_score = (1 + beta_0_5**2) * (precision * recall) / ((beta_0_5**2 * precision) + recall) if (precision + recall) > 0 else 0
f2_score = (1 + beta_2**2) * (precision * recall) / ((beta_2**2 * precision) + recall) if (precision + recall) > 0 else 0
per_tag_metrics[tag] = {
'Precision': precision,
'Recall': recall,
'f1-Score': f1_score,
'f05-Score': f0_5_score,
'f2-Score': f2_score
}
print(f"{tag}: Precision = {precision:.2f}, Recall = {recall:.2f}, f1-Score = {f1_score:.2f}, "
f"f05-Score = {f0_5_score:.2f}, f2-Score = {f2_score:.2f}")
def tagging(self, input):
sentence = (re.sub(r'(\S)([.,;:!?])', r'\1 \2', input.strip())).split()
sentence_list = [[word] for word in sentence]
features = [self.word_features(sentence_list, i) for i in range(len(sentence_list))]
predicted_tags = self.crf_model.predict([features])
output = "".join(f"{sentence[i]}[{predicted_tags[0][i]}] " for i in range(len(sentence)))
return output
tagger = CRF_POS_Tagger()
interface = gr.Interface(fn = tagger.tagging,
inputs = "text",
outputs = "text",
title = "CRF POS Tagger",
description = "CS626 Assignment 1b by 24M0797, 24M0798, 24M0815, 24M0833")
interface.launch(inline = False)