mask-detection-manfred / pipelines.py
manfredmichael's picture
Add pipeline
93c1293
raw
history blame
6.65 kB
from PIL import Image
from ultralytics import YOLO
import numpy as np
import cv2
import torch
from utils import readb64, img2base64
model_int8 = YOLO('weights/best.torchscript', task='detect')
labels = {
0: 'mask_weared_incorrect',
1: 'with_mask',
2: 'without_mask',
}
def inference_on_image(path):
results = model_int8(path)
img = cv2.imread(path, cv2.COLOR_BGR2RGB)
for box in results[0].boxes:
img = draw_bbox_prediction(img, box)
cv2.imshow('Detected Image', img)
cv2.waitKey(0)
return results
def inference_on_video(path, vid_stride=10):
results = model_int8(path, vid_stride=10, stream=True)
cap = cv2.VideoCapture(path)
ret, img = cap.read()
frame_counter = 0
while True:
ret, img = cap.read()
if ret:
if frame_counter % 10 == 0:
result = next(results)
for box in result.boxes:
img = draw_bbox_prediction(img, box)
else:
cap.release()
break
cv2.imshow('Detected Image', img)
frame_counter += 1
k = cv2.waitKey(5) & 0xFF
if k == 27:
cap.release()
cv2.destroyAllWindows()
break
return results
def draw_bbox_prediction(img, box):
cls = box.cls.item()
confidence = box.conf.item()
label = labels[cls]
x1, y1, x2, y2 = map(int, list(box.xyxy.numpy()[0]))
scaler = (x2-x1)/(640/8)
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 102, 255), int(2*scaler))
img = cv2.rectangle(img, (x1, y1 - int(20*scaler)), (x1 + (x2 - x1)*3, y1), (0, 102, 255), -1)
img = cv2.putText(img, "{}: {:.3f}".format(label, confidence), (x1,y1-5),cv2.FONT_HERSHEY_SIMPLEX,0.6*scaler,(255,255,255), int(1*scaler))
return img
class ImagePipeline:
def __init__(self, device='cpu', gpu_id=0, weights='weights/best.torchscript'):
self.model = YOLO(weights, task='detect')
def preprocess(self, data):
image_base64 = data.pop("images", data)
if not type(image_base64) == list:
image_base64 = [image_base64]
elif len(image_base64) > 1:
raise Exception("ImagePipeline only accepts 1 image/frame")
images = [readb64(image) for image in image_base64]
return images
def inference(self, images):
results = self.model(images[0])
return results
def get_response(self, inference_result):
response = []
if not bool(set([0, 2]).intersection(inference_result[0].boxes.cls.numpy())):
# if not set([0, 2]).issubset(inference_result[0].boxes.cls.numpy()):
message = "Everyone is wearing mask correctly"
else:
message = "Someone is not wearing mask or incorrectly wearing mask"
for i, result in enumerate(inference_result):
for xywhn, cls, conf in zip(
result.boxes.xywhn,
result.boxes.cls,
result.boxes.conf
):
xywhn = list(xywhn.numpy())
response.append({
'xywhn': {
'x': float(xywhn[0]),
'y': float(xywhn[1]),
'w': float(xywhn[2]),
'h': float(xywhn[3]),
},
'class': cls.item(),
'confidence': conf.item(),
})
return {'results': response,
'message': message}
def draw_bbox(self, images, inference_result):
img = np.array(images[0])
boxes = list(inference_result[0].boxes)
boxes.reverse()
for box in boxes:
img = draw_bbox_prediction(img, box)
return img
def __call__(self, data, config_payload=None, draw_bbox=False):
images = self.preprocess(data)
inference_result = self.inference(images)
response = self.get_response(inference_result)
if draw_bbox:
annotated_img = self.draw_bbox(images, inference_result)
return response, annotated_img
return response
class VideoPipeline:
def __init__(self, device='cpu', gpu_id=0, weights='weights/best.torchscript'):
self.model = YOLO(weights, task='detect')
def preprocess(self, data):
return data
def inference(self, video_path, vid_stride=30):
results = self.model(video_path, vid_stride=vid_stride)
return results
def get_response(self, inference_result):
response = []
# default message
message = "Everyone is wearing mask correctly"
for i, result in enumerate(inference_result):
if set([0, 2]).issubset(inference_result[0].boxes.cls.numpy()):
message = "Someone is not wearing mask or incorrectly wearing mask"
for xywhn, cls, conf in zip(
result.boxes.xywhn,
result.boxes.cls,
result.boxes.conf
):
xywhn = list(xywhn.numpy())
response.append({
'xywhn': {
'x': float(xywhn[0]),
'y': float(xywhn[1]),
'w': float(xywhn[2]),
'h': float(xywhn[3]),
},
'class': cls.item(),
'confidence': conf.item(),
})
return {'results': response,
'message': message}
def __call__(self, data, config_payload=None):
data = self.preprocess(data)
inference_result = self.inference(data)
response = self.get_response(inference_result)
return response
if __name__ == '__main__':
import cv2
import argparse
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--input_type',
default='image',
const='image',
nargs='?',
choices=['image', 'video'],
help='type of input (default: %(default)s)')
parser.add_argument("-p", "--path", help="filepath")
args = parser.parse_args()
if args.input_type=='image':
results = inference_on_image(args.path)
elif args.input_type == 'video':
results = inference_on_video(args.path)
print(results)
# Examples
# python pipelines.py --input_type image --path sample_files/image-1.jpeg
# python pipelines.py --input_type video --path sample_files/video-1.mp4