Spaces:
Runtime error
Runtime error
import streamlit as st | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import tensorflow as tf | |
import tensorflow_probability as tfp | |
from math import sqrt | |
from scipy import stats | |
import pandas as pd | |
tfd = tfp.distributions | |
tfl = tfp.layers | |
st.title("Probability Distributions") | |
add_selectbox = st.sidebar.selectbox( | |
'Choose an Option', | |
('Discrete Univariate', 'Continuous Univariate') | |
) | |
# st.title("1 dimensional normal distribution") | |
def Sum(p1val,p2val,zval): | |
l = int(max(max(zval), len(zval))) | |
l=l*2 | |
s=[0]*l | |
for i in range(len(zval)): | |
for j in range(len(zval)): | |
s[int(zval[i]+zval[j])]+=p1val[i]*p2val[j] | |
return s | |
def Product(p1val,p2val,zval): | |
l=int(max(max(zval),len(zval))) | |
l=l**2 | |
s=[0]*l | |
for i in range(len(zval)): | |
for j in range(len(zval)): | |
s[int(zval[i]*zval[j])]+=p1val[i]*p2val[j] | |
return s | |
def Normal(): | |
st.header("Normal distribution") | |
p = tfd.Normal(2, 1) | |
mean = st.slider('Mean', -5, 5, 0) | |
std = st.slider('Scale', 0, 5, 1) | |
z = f"""\\begin{{array}}{{cc}} | |
\mu &= {mean} \\\\ | |
\sigma &= {std} | |
\\end{{array}} | |
""" | |
st.latex(z) | |
st1 = r''' | |
mean= \[\mu\] | |
Variance = \[ \sigma ^2\] | |
Entropy = \[ \frac{1}{2}\log (2 \pi \sigma ^2) + \frac{1}{2} \] | |
''' | |
st.latex(st1) | |
q=tfd.Normal(mean,std) | |
z_values = tf.linspace(-5, 5, 200) | |
z_values = tf.cast(z_values, tf.float32) | |
prob_values_p = p.prob(z_values) | |
prob_values_q = q.prob(z_values) | |
fig, ax = plt.subplots() | |
ax.plot(z_values, prob_values_p, label=r'Distribution with unknown parameter', linestyle='--', lw=5, alpha=0.5) | |
ax.plot(z_values, prob_values_q, label=r'Distribution with given parameters') | |
ax.set_xlabel("x") | |
ax.set_ylabel("PDF(x)") | |
ax.legend() | |
ax.set_ylim((0, 1)) | |
st.pyplot(fig) | |
kl = tfd.kl_divergence(q, p) | |
st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}") | |
st.subheader("Sum of two Normal Distributions") | |
z_values1 = tf.linspace(-10, 10, 21) | |
z_values1 = tf.cast(z_values1, tf.float32) | |
mean1 = st.slider('Mean1', -5, 5, 0) | |
std1 = st.slider('Std1', 0, 5, 1) | |
mean2 = st.slider('Mean2', -5, 5, 0) | |
std2 = st.slider('Std2', 0, 5, 1) | |
q1=tfd.Normal(mean1,std1) | |
q2=tfd.Normal(mean2,std2) | |
prob_values_q1 = list(q1.prob(z_values1)) | |
prob_values_q2 = list(q2.prob(z_values1)) | |
fig2, (ax2,ax3) = plt.subplots(1,2) | |
ax2.plot(z_values1, prob_values_q1, label=r'Normal(mean1,std1)') | |
ax3.plot(z_values1, prob_values_q2, label=r'Normal(mean2,std2)') | |
ax2.set_xlabel("x") | |
ax2.set_ylabel("PDF(x)") | |
ax2.set_title("Normal(mean1,std1)") | |
ax2.set_ylim((0, 1)) | |
ax3.set_xlabel("x") | |
ax3.set_ylabel("PDF(x)") | |
ax3.set_title("Normal(mean2,std2)") | |
ax3.set_ylim((0, 1)) | |
st.pyplot(fig2) | |
prob_values_sum = Sum(prob_values_q1, prob_values_q2, z_values1) | |
q3 = tfd.Normal(mean1+mean2, sqrt(((std1)**2 + (std2)**2))) | |
prob_values_q3 = q3.prob(range(len(prob_values_sum))) | |
fig3, ax4 = plt.subplots() | |
ax4.plot(range(len(prob_values_sum)), prob_values_sum, label=r'Normal(mean1,std1)+Normal(mean2,std2)', linestyle='--', lw=5, alpha=0.5) | |
ax4.plot(range(len(prob_values_sum)), prob_values_q3, label=r'Normal(mean1+mean2, sqrt((std1^2 + std2^2)') | |
ax4.set_xlabel("x") | |
ax4.set_ylabel("PDF(x)") | |
ax4.legend() | |
ax4.set_ylim((0, 1)) | |
st.pyplot(fig3) | |
st.markdown("Sum of two Normal distributions yields a Normal distribution") | |
st.subheader("Relationship between Poisson and Normal Distribution") | |
rate3 = st.slider('lambda1', 100, 500, 250, 50) | |
q4 = tfd.Poisson(rate=rate3) | |
z_values1 = tf.linspace(0, 600, 601) | |
z_values1 = tf.cast(z_values1, tf.float32) | |
prob_values_q4 = list(q4.prob(z_values1)) | |
q5 = tfd.Normal(rate3, sqrt(rate3)) | |
prob_values_q5 = list(q5.prob(z_values1)) | |
fig4, ax5 = plt.subplots() | |
ax5.stem(z_values1, prob_values_q4, label=r'Poisson(lambda1)]', linefmt='r', markerfmt='ro') | |
ax5.plot(z_values1, prob_values_q5, label=r'Normal(lamda1,sqrt(lambda1)', lw=3) | |
ax5.set_xlabel("x") | |
ax5.set_ylabel("PDF(x)") | |
ax5.legend() | |
ax5.set_ylim((0, 0.1)) | |
st.pyplot(fig4) | |
st.markdown("For large values of lambda, Poisson(lambda) becomes approximately a normal distribution having mean= lambda and variance= lambda") | |
def Exponential(): | |
st.subheader("Exponential distribution") | |
p = tfd.Exponential(2) | |
rate = st.slider('Lambda', 1, 5, 1) | |
cdf = r''' | |
cdf = $\int_a^b f(x)dx$ | |
''' | |
st.latex(cdf) | |
q = tfd.Exponential(rate) | |
z_values = tf.linspace(-5, 5, 200) | |
z_values = tf.cast(z_values, tf.float32) | |
prob_values_p = p.prob(z_values) | |
prob_values_q = q.prob(z_values) | |
fig, ax = plt.subplots() | |
ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5) | |
ax.plot(z_values, prob_values_q, label=r'q') | |
ax.set_xlabel("x") | |
ax.set_ylabel("PDF(x)") | |
ax.legend() | |
ax.set_ylim((0, 1)) | |
st.pyplot(fig) | |
kl = tfd.kl_divergence(q, p) | |
st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}") | |
st.subheader("Relationship between Gamma and Exponential Distribution") | |
alpha1 = 1 | |
st.write("alpha1=1") | |
beta1 = st.slider('beta1', 0.0, 10.0, 5.0, 0.5) | |
q2 = tfd.Gamma(concentration=alpha1, rate=beta1) | |
prob_values_q2 = list(q2.prob(z_values)) | |
q3 = tfd.Exponential(beta1) | |
prob_values_q3 = list(q3.prob(z_values)) | |
fig3, ax3 = plt.subplots() | |
ax3.plot(z_values, prob_values_q2, linestyle='--', lw=3, alpha=0.5, label=r'Gamma(1,beta)') | |
ax3.plot(z_values, prob_values_q3, label=r'Exponential(beta)') | |
ax3.set_xlabel("x") | |
ax3.set_ylabel("PDF(x)") | |
ax3.legend() | |
# ax3.set_ylim((0, 1)) | |
st.pyplot(fig3) | |
def Uniform(): | |
st.subheader("Uniform distribution") | |
p = tfd.Uniform(0,1) | |
low = st.slider('low', 0, 5, 1) | |
high = st.slider('high', 1, 6, 1) | |
cdf = r''' | |
cdf = $\int_a^b f(x)dx$ | |
''' | |
st.latex(cdf) | |
q = tfd.Uniform(low,high) | |
z_values = tf.linspace(-5, 5, 200) | |
z_values = tf.cast(z_values, tf.float32) | |
prob_values_p = p.prob(z_values) | |
prob_values_q = q.prob(z_values) | |
fig, ax = plt.subplots() | |
ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5) | |
ax.plot(z_values, prob_values_q, label=r'q') | |
ax.set_xlabel("x") | |
ax.set_ylabel("PDF(x)") | |
ax.legend() | |
ax.set_ylim((0, 1)) | |
st.pyplot(fig) | |
kl = tfd.kl_divergence(q, p) | |
st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}") | |
st.subheader("Relationship between Beta Distribution and Uniform Distribution") | |
st.write("beta = alpha= 1") | |
q4 = tfd.Beta(1, 1) | |
q5 = tfd.Uniform(0, 1) | |
z_values1 = tf.linspace(0, 1, 200) | |
z_values1 = tf.cast(z_values1, tf.float32) | |
prob_values_q4 = list(q4.prob(z_values1)) | |
prob_values_q5 = list(q5.prob(z_values1)) | |
fig3, ax3 = plt.subplots() | |
ax3.plot(z_values1, prob_values_q4, label=r'Beta(1,1)', linestyle='--', lw=3) | |
ax3.plot(z_values1, prob_values_q5, label=r'Uniform(0,1)') | |
ax3.set_xlabel("x") | |
ax3.set_ylabel("PDF(x)") | |
ax3.legend() | |
# ax3.set_ylim((0, 1)) | |
st.pyplot(fig3) | |
def Cauchy(): | |
st.subheader("Cauchy distribution") | |
p = tfd.Cauchy(0, 0.5) | |
loc = st.slider('location', 0.0, 5.0, 1.0, 0.5) | |
sc = st.slider('scale', 0.0, 5.0, 1.0, 0.5) | |
cdf = r''' | |
cdf = $\int_a^b f(x)dx$ | |
''' | |
st.latex(cdf) | |
q = tfd.Cauchy(loc, sc) | |
z_values = tf.linspace(-5, 5, 200) | |
z_values = tf.cast(z_values, tf.float32) | |
prob_values_p = p.prob(z_values) | |
prob_values_q = q.prob(z_values) | |
fig, ax = plt.subplots() | |
ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5) | |
ax.plot(z_values, prob_values_q, label=r'q') | |
ax.set_xlabel("x") | |
ax.set_ylabel("PDF(x)") | |
ax.legend() | |
ax.set_ylim((0, 1)) | |
st.pyplot(fig) | |
kl = tfd.kl_divergence(q, p) | |
st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}") | |
st.subheader("Relationship between Cauchy and StudentT Distribution") | |
q2 = tfd.Cauchy(0,1) | |
q3 = tfd.StudentT(1,0,1) | |
prob_values_q2 = list(q2.prob(z_values)) | |
prob_values_q3 = list(q3.prob(z_values)) | |
fig2, ax2 = plt.subplots() | |
ax2.plot(z_values, prob_values_q2, label=r'Cauchy(0,1)', linestyle='--', lw=3) | |
ax2.plot(z_values, prob_values_q3, label=r'StudentT(1,0,1)') | |
ax2.set_xlabel("x") | |
ax2.set_ylabel("PDF(x)") | |
ax2.legend() | |
ax2.set_ylim((0, 1)) | |
st.pyplot(fig2) | |
def Chi(): | |
st.subheader("Chi distribution") | |
p = tfd.Chi(3) | |
d = st.slider('dof', 0.0, 5.0, 1.0, 0.5) | |
cdf = r''' | |
cdf = $\int_a^b f(x)dx$ | |
''' | |
st.latex(cdf) | |
q = tfd.Chi(d) | |
z_values = tf.linspace(-5, 5, 200) | |
z_values = tf.cast(z_values, tf.float32) | |
prob_values_p = p.prob(z_values) | |
prob_values_q = q.prob(z_values) | |
fig, ax = plt.subplots() | |
ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5) | |
ax.plot(z_values, prob_values_q, label=r'q') | |
ax.set_xlabel("x") | |
ax.set_ylabel("PDF(x)") | |
ax.legend() | |
ax.set_ylim((0, 1)) | |
st.pyplot(fig) | |
kl = tfd.kl_divergence(q, p) | |
st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}") | |
#st.subheader("Transformation of Chi Distribution") | |
#d2 = st.slider('dof2', 0, 5, 1, 1) | |
#p1 = tfd.Chi(d2) | |
#prob_values_new = list(p1.prob(z_values)) | |
#z_values2 = np.zeros(len(z_values)) | |
#for i in range(len(z_values2)): | |
# z_values2[i] = z_values[i]**2 | |
#q1 = tfd.Chi2(d2) | |
#new = list(q1.prob(z_values)) | |
# fig2, ax2 = plt.subplots() | |
# ax2.plot(z_values, prob_values_new, label=r'X->Chi(d)', lw=3) | |
# ax2.plot(z_values2, prob_values_new, label=r'X transformed to X^2', lw=2) | |
# ax2.plot(z_values2, new, label=r'Chi2(d)', linestyle='--', lw=2) | |
#ax2.set_xlabel("x") | |
#ax2.set_ylabel("PDF(x)") | |
#ax2.legend() | |
#st.pyplot(fig2) | |
def Chi_squared(): | |
st.subheader("Chi-squared distribution") | |
p = tfd.Chi2(4) | |
dof = st.slider('dof', 0.0, 10.0, 2.0,0.5) | |
cdf = r''' | |
cdf = $\int_a^b f(x)dx$ | |
''' | |
st.latex(cdf) | |
q = tfd.Chi2(dof) | |
z_values = tf.linspace(0, 10, 200) | |
z_values = tf.cast(z_values, tf.float32) | |
prob_values_p = p.prob(z_values) | |
prob_values_q = q.prob(z_values) | |
fig, ax = plt.subplots() | |
ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5) | |
ax.plot(z_values, prob_values_q, label=r'q') | |
ax.set_xlabel("x") | |
ax.set_ylabel("PDF(x)") | |
ax.legend() | |
ax.set_ylim((0, 1)) | |
st.pyplot(fig) | |
kl = tfd.kl_divergence(q, p) | |
st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}") | |
st.subheader("Relationship between Chi-Squared and Exponential Distribution") | |
q2 =tfd.Chi2(2) | |
q3 = tfd.Exponential(0.5) | |
prob_values_q2 = list(q2.prob(z_values)) | |
prob_values_q3 = list(q3.prob(z_values)) | |
fig2, ax2 = plt.subplots() | |
ax2.plot(z_values, prob_values_q2, label=r'Chi-Squared(2)', linestyle='--', lw=3) | |
ax2.plot(z_values, prob_values_q3, label=r'Exponential(0.5)') | |
ax2.set_xlabel("x") | |
ax2.set_ylabel("PDF(x)") | |
ax2.legend() | |
ax2.set_ylim((0, 1)) | |
st.pyplot(fig2) | |
def Laplace(): | |
st.subheader("Laplace distribution") | |
p = tfd.Laplace(0, 3) | |
m = st.slider('mu', 0, 5, 1) | |
s = st.slider('sigma', 0, 5, 1) | |
cdf = r''' | |
cdf = $\int_a^b f(x)dx$ | |
''' | |
st.latex(cdf) | |
q = tfd.Laplace(m, s) | |
z_values = tf.linspace(-5, 5, 200) | |
z_values = tf.cast(z_values, tf.float32) | |
prob_values_p = p.prob(z_values) | |
prob_values_q = q.prob(z_values) | |
fig, ax = plt.subplots() | |
ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5) | |
ax.plot(z_values, prob_values_q, label=r'q') | |
ax.set_xlabel("x") | |
ax.set_ylabel("PDF(x)") | |
ax.legend() | |
ax.set_ylim((0, 1)) | |
st.pyplot(fig) | |
kl = tfd.kl_divergence(q, p) | |
st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}") | |
def Pareto(): | |
st.subheader("Pareto distribution") | |
p = tfd.Pareto(2, 1) | |
a = st.slider('alpha', 0.0, 5.0, 2.5, 0.5) | |
s = st.slider('scale', 0.0, 5.0, 2.5, 0.5) | |
cdf = r''' | |
cdf = $\int_a^b f(x)dx$ | |
''' | |
st.latex(cdf) | |
q = tfd.Pareto(a, s) | |
z_values = tf.linspace(0, 5, 200) | |
z_values = tf.cast(z_values, tf.float32) | |
prob_values_p = p.prob(z_values) | |
prob_values_q = q.prob(z_values) | |
fig, ax = plt.subplots() | |
ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=2, alpha=0.5) | |
ax.plot(z_values, prob_values_q, label=r'q') | |
ax.set_xlabel("x") | |
ax.set_ylabel("PDF(x)") | |
ax.legend() | |
st.pyplot(fig) | |
kl = tfd.kl_divergence(q, p) | |
st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}") | |
def Weibull(): | |
st.header("Weibull distribution") | |
p = tfd.Weibull(1,2) | |
k = st.slider('k', 0.0, 5.0, 0.5, 0.5) | |
l = st.slider('lambda', 0.0, 5.0, 0.5, 0.5) | |
cdf = r''' | |
cdf = $\int_a^b f(x)dx$ | |
''' | |
st.latex(cdf) | |
q = tfd.Weibull(k, l) | |
z_values = tf.linspace(0, 10, 200) | |
z_values = tf.cast(z_values, tf.float32) | |
prob_values_p = p.prob(z_values) | |
prob_values_q = q.prob(z_values) | |
fig, ax = plt.subplots() | |
ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5) | |
ax.plot(z_values, prob_values_q, label=r'q') | |
ax.set_xlabel("x") | |
ax.set_ylabel("PDF(x)") | |
ax.legend() | |
ax.set_ylim((0, 2)) | |
st.pyplot(fig) | |
kl = tfd.kl_divergence(q, p) | |
st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}") | |
st.subheader("Relationship between Weibull and Exponential Distribution") | |
l1 = st.slider('l', 0.0, 5.0, 1.0, 0.5) | |
k1 = 1 | |
st.write("k=1") | |
q2 = tfd.Weibull(k1, l1) | |
prob_values_q2 = list(q2.prob(z_values)) | |
q3 = tfd.Exponential(1/l1) | |
prob_values_q3 = list(q3.prob(z_values)) | |
fig3, ax3 = plt.subplots() | |
ax3.plot(z_values, prob_values_q2, linestyle='--', lw=3, alpha=0.5, label=r'Weibull(1,l)') | |
ax3.plot(z_values, prob_values_q3, label=r'Exponential(1/l)') | |
ax3.set_xlabel("x") | |
ax3.set_ylabel("PDF(x)") | |
ax3.legend() | |
ax3.set_ylim((0, 2)) | |
st.pyplot(fig3) | |
def StudentT(): | |
st.subheader("StudentT Distribution") | |
p = tfd.StudentT(1,0,1) | |
df = st.slider('df',0,5,2,1) | |
loc = st.slider('loc', 0, 5, 2, 1) | |
scale = st.slider('scale', 0, 5, 2, 1) | |
cdf = r''' | |
cdf = $\int_a^b f(x)dx$ | |
''' | |
st.latex(cdf) | |
q = tfd.StudentT(df,loc,scale) | |
z_values = tf.linspace(-10, 10 , 200) | |
z_values = tf.cast(z_values, tf.float32) | |
prob_values_p = p.prob(z_values) | |
prob_values_q = q.prob(z_values) | |
fig, ax = plt.subplots() | |
ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=3, alpha=0.5) | |
ax.plot(z_values, prob_values_q, label=r'q') | |
ax.set_xlabel("x") | |
ax.set_ylabel("PDF(x)") | |
ax.legend() | |
ax.set_ylim((0, 1)) | |
st.pyplot(fig) | |
st.subheader("Relationship between Cauchy and StudentT Distribution") | |
q2 = tfd.Cauchy(0, 1) | |
q3 = tfd.StudentT(1, 0, 1) | |
prob_values_q2 = list(q2.prob(z_values)) | |
prob_values_q3 = list(q3.prob(z_values)) | |
fig2, ax2 = plt.subplots() | |
ax2.plot(z_values, prob_values_q2, label=r'Cauchy(0,1)', linestyle='--', lw=3) | |
ax2.plot(z_values, prob_values_q3, label=r'StudentT(1,0,1)') | |
ax2.set_xlabel("x") | |
ax2.set_ylabel("PDF(x)") | |
ax2.legend() | |
ax2.set_ylim((0, 1)) | |
st.pyplot(fig2) | |
def Beta(): | |
st.subheader("Beta distribution") | |
p = tfd.Beta(1.5,1.1) | |
alpha = st.slider('alpha', 0.0, 2.0, 1.2,0.1) | |
beta = st.slider('beta', 0.0, 2.0, 1.2,0.1) | |
cdf = r''' | |
cdf = $\int_a^b f(x)dx$ | |
''' | |
st.latex(cdf) | |
q = tfd.Beta(alpha, beta) | |
z_values = tf.linspace(0, 1, 200) | |
z_values = tf.cast(z_values, tf.float32) | |
prob_values_p = p.prob(z_values) | |
prob_values_q = q.prob(z_values) | |
fig, ax = plt.subplots() | |
ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5) | |
ax.plot(z_values, prob_values_q, label=r'q') | |
ax.set_xlabel("x") | |
ax.set_ylabel("PDF(x)") | |
ax.legend() | |
#ax.set_ylim((0, 1)) | |
st.pyplot(fig) | |
kl = tfd.kl_divergence(q, p) | |
st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}") | |
st.subheader("Relationship between Beta Distribution and Normal Distribution") | |
alpha1 = st.slider('beta=alpha', 50, 500,250, 50) | |
q2 = tfd.Beta(alpha1, alpha1) | |
q3 = tfd.Normal(0.5,sqrt(0.25/(2*alpha1+1))) | |
z_values1 = tf.linspace(0, 1, 200) | |
z_values1 = tf.cast(z_values1, tf.float32) | |
prob_values_q2 = q2.prob(z_values1) | |
prob_values_q3 = q3.prob(z_values1) | |
fig2, ax2 = plt.subplots() | |
ax2.plot(z_values1, prob_values_q2, label=r'Beta(alpha,Beta)', linestyle='--', lw=3) | |
ax2.plot(z_values1, prob_values_q3, label=r'Normal') | |
ax2.set_xlabel("x") | |
ax2.set_ylabel("PDF(x)") | |
ax2.legend() | |
#ax2.set_ylim((0, 1)) | |
st.pyplot(fig2) | |
st.subheader("Relationship between Beta Distribution and Uniform Distribution") | |
st.write("beta = alpha= 1") | |
q4 = tfd.Beta(1,1) | |
q5 = tfd.Uniform(0,1) | |
z_values1 = tf.linspace(0, 1, 200) | |
z_values1 = tf.cast(z_values1, tf.float32) | |
prob_values_q4 = list(q4.prob(z_values1)) | |
prob_values_q5 = list(q5.prob(z_values1)) | |
fig3, ax3 = plt.subplots() | |
ax3.plot(z_values1, prob_values_q4, label=r'Beta(1,1)', linestyle='--', lw=3) | |
ax3.plot(z_values1, prob_values_q5, label=r'Uniform(0,1)') | |
ax3.set_xlabel("x") | |
ax3.set_ylabel("PDF(x)") | |
ax3.legend() | |
#ax3.set_ylim((0, 1)) | |
st.pyplot(fig3) | |
st.subheader("Transformation of Beta Distribution") | |
alpha2 = st.slider('alpha2', 0.0, 2.0, 1.2,0.1) | |
beta2 = st.slider('beta2', 0.0, 2.0, 1.8,0.1) | |
p1 = tfd.Beta(alpha2, beta2) | |
prob_values_new = list(p1.prob(z_values)) | |
z_values2 = np.zeros(len(z_values)) | |
for i in range(len(z_values2)): | |
z_values2[i] = 1 - z_values[i] | |
q1 = tfd.Beta(beta2,alpha2) | |
new = list(q1.prob(z_values)) | |
fig2, ax2 = plt.subplots() | |
ax2.plot(z_values, prob_values_new, label=r'X->Beta(alpha,beta)', lw=3) | |
ax2.plot(z_values2, prob_values_new, label=r'X transformed to 1-X', lw=2) | |
ax2.plot(z_values, new, label=r'X->Beta(beta,alpha)', linestyle='--', lw=2) | |
ax2.set_xlabel("x") | |
ax2.set_ylabel("PDF(x)") | |
ax2.legend() | |
st.pyplot(fig2) | |
def Poisson(): | |
st.subheader("Poisson distribution") | |
p = tfd.Poisson(5) | |
rate = st.slider('lambda', 0, 10, 1) | |
cdf = r''' | |
cdf = $\int_a^b f(x)dx$ | |
''' | |
st.latex(cdf) | |
q = tfd.Poisson(rate) | |
z_values = tf.linspace(-2, 10, 13) | |
z_values = tf.cast(z_values, tf.float32) | |
prob_values_p = p.prob(z_values) | |
prob_values_q = q.prob(z_values) | |
fig, ax = plt.subplots() | |
ax.stem(z_values, prob_values_p, label=r'Distribution with unknown parameters', linefmt='r', markerfmt='ro') | |
ax.stem(z_values, prob_values_q, label=r'Distribution with given parameters', linefmt='--', markerfmt='bo') | |
ax.set_xlabel("x") | |
ax.set_ylabel("PDF(x)") | |
ax.legend() | |
ax.set_ylim((0, 1)) | |
st.pyplot(fig) | |
st.subheader("Addition of two Poisson distributions") | |
rate1 = st.slider('lambda1', 0, 10, 1) | |
rate2 = st.slider('lambda2', 0, 10, 1) | |
q1 = tfd.Poisson(rate1) | |
q2 = tfd.Poisson(rate2) | |
prob_values_q1 = list(q1.prob(z_values)) | |
prob_values_q2 = list(q2.prob(z_values)) | |
fig2, (ax2,ax3) = plt.subplots(1,2) | |
ax2.stem(z_values, prob_values_q1, linefmt='r', markerfmt='ro') | |
ax3.stem(z_values, prob_values_q2, linefmt='--', markerfmt='bo') | |
ax2.set_xlabel("x") | |
ax2.set_title("Poisson(lambda1)") | |
ax2.set_ylim((0, 1)) | |
ax3.set_xlabel("x") | |
ax3.set_title("Poisson(lambda2)") | |
ax3.set_ylim((0, 1)) | |
st.pyplot(fig2) | |
prob_values_sum =Sum(prob_values_q1, prob_values_q2, z_values) | |
q3 = tfd.Poisson(rate1+rate2) | |
prob_values_q3 = list(q3.prob(range(len(prob_values_sum)))) | |
fig3, ax4 = plt.subplots() | |
ax4.stem(range(len(prob_values_sum)), prob_values_sum, label=r'Poisson(lambda1)+Poisson(lambda2)', linefmt='r', markerfmt='ro') | |
ax4.stem(range(len(prob_values_sum)), prob_values_q3, linefmt='--', label=r'Poisson(lambda1+lambda2)', markerfmt='bo') | |
ax4.set_xlabel("x") | |
ax4.set_ylabel("PDF(x)") | |
ax4.legend() | |
ax4.set_ylim((0, 1)) | |
st.pyplot(fig3) | |
st.markdown("Summation of two poisson distribution with parameter lamba1 and lambda2 yields Poisson distribution with parameter (lambda1+lambda2)") | |
st.subheader("Relationship between Poisson and Normal Distribution") | |
rate3 = st.slider('lambda1', 100, 500,250,50) | |
q4 = tfd.Poisson(rate=rate3) | |
z_values1 = tf.linspace(0, 600, 601) | |
z_values1 = tf.cast(z_values1, tf.float32) | |
prob_values_q4 = list(q4.prob(z_values1)) | |
q5 = tfd.Normal(rate3, sqrt(rate3)) | |
prob_values_q5 = list(q5.prob(z_values1)) | |
fig4, ax5 = plt.subplots() | |
ax5.stem(z_values1, prob_values_q4, label=r'Poisson(lambda1)]', linefmt='r', markerfmt='ro') | |
ax5.plot(z_values1, prob_values_q5, label=r'Normal(lamda1,sqrt(lambda1)', lw=3) | |
ax5.set_xlabel("x") | |
ax5.set_ylabel("PDF(x)") | |
ax5.legend() | |
ax5.set_ylim((0, 0.1)) | |
st.pyplot(fig4) | |
st.markdown("for large values of lambda, Poisson(lambda) becomes approximately a normal distribution having mean= lambda and variance= lambda") | |
def Binomial(): | |
st.subheader("Binomial distribution") | |
p = tfd.Binomial(total_count=5, probs=.5) | |
count = st.slider('n', 1, 10, 4, 1) | |
prob = st.slider('prob', 0.0, 1.0, 0.5,0.1) | |
st1 = r''' | |
Mean = \[n p \] | |
Variance = \[n p q\] | |
Entropy = \[\frac{1}{2} \log_2 (2 \pi n e p q)\ + O ( \frac {1}{n}) \] | |
''' | |
st.latex(st1) | |
q = tfd.Binomial(total_count=count, probs=prob ) | |
z_values = tf.linspace(0, 10, 11) | |
z_values = tf.cast(z_values, tf.float32) | |
prob_values_p = list(p.prob(z_values)) | |
prob_values_q = list(q.prob(z_values)) | |
fig, ax = plt.subplots() | |
ax.stem(z_values, prob_values_p, label=r'Distribution with unknown parameters', linefmt = 'r', markerfmt = 'ro') | |
ax.stem(z_values, prob_values_q, label=r'Distribution with given parameters', linefmt ='--', markerfmt = 'bo') | |
ax.set_xlabel("x") | |
ax.set_ylabel("PDF(x)") | |
ax.legend() | |
ax.set_ylim((0, 1)) | |
st.pyplot(fig) | |
st.markdown("Relationship between Poisson and Binomial Distribution") | |
count1 = st.slider('n', 750, 1000, 800, 25) | |
prob1 = st.slider('prob', 0.0, 0.010, 0.001, 0.001) | |
t = tfd.Binomial(total_count=count1, probs=prob1) | |
r = tfd.Poisson(count1*prob1) | |
z_values1 = tf.linspace(0, 50, 51) | |
z_values1 = tf.cast(z_values1, tf.float32) | |
prob_values_t = t.prob(z_values1) | |
prob_values_r = r.prob(z_values1) | |
fig1, ax = plt.subplots() | |
ax.stem(z_values1, prob_values_t, label=r'binomial', linefmt='r', markerfmt='ro') | |
ax.stem(z_values1, prob_values_r, label=r'poisson', linefmt='--', markerfmt='bo') | |
ax.set_xlabel("x") | |
ax.set_ylabel("PDF(x)") | |
ax.legend() | |
ax.set_ylim((0, 0.5)) | |
st.pyplot(fig1) | |
st.markdown("") | |
st.markdown("It is clear from the graph, that for large values of n and small values of p, the binomial distribution approximates to poisson distribution.") | |
st.markdown("") | |
st.markdown("Transformation of Binomial Distribution") | |
count2 = st.slider('n1', 1, 10, 4, 1) | |
prob2 = st.slider('p', 0.0, 1.0, 0.5, 0.1) | |
p1 = tfd.Binomial(total_count=count2, probs=prob2) | |
prob_values_n_p = list(p1.prob(z_values)) | |
z_values2=np.zeros(len(z_values)) | |
for i in range(len(z_values2)): | |
z_values2[i]=count2-z_values[i] | |
q1 = tfd.Binomial(total_count=count2, probs=1-prob2) | |
new = list(q1.prob(z_values)) | |
fig2, ax = plt.subplots() | |
ax.stem(z_values, prob_values_n_p, label=r'X->Binomial(n,p)', linefmt='r', markerfmt='ro') | |
ax.stem(z_values2, prob_values_n_p, label=r'X transformed to N-X', linefmt='g', markerfmt='go') | |
ax.stem(z_values, new, label=r'X->Binomial(n,1-p)', linefmt='--', markerfmt='bo') | |
ax.set_xlabel("x") | |
ax.set_ylabel("PDF(x)") | |
ax.legend() | |
ax.set_ylim((0, 1)) | |
ax.set_xlim((-0.5,count2+0.5)) | |
st.pyplot(fig2) | |
st.markdown("When a r.v. X with the binomial(n,p) distribution is transformed to n-X, we get a binomial(n,1-p) distribution.") | |
st.markdown("Relationship between Normal and Binomial Distribution") | |
count3 = st.slider('n3', 750, 1000, 800, 25) | |
prob3 = st.slider('prob3', 0.0, 1.0, 0.5, 0.1) | |
t = tfd.Binomial(total_count=count3, probs=prob3) | |
r = tfd.Normal(count3 * prob3, sqrt((count3*prob3*(1-prob3)))) | |
z_values1 = tf.linspace(0, 1000, 1001) | |
z_values1 = tf.cast(z_values1, tf.float32) | |
prob_values_t = t.prob(z_values1) | |
prob_values_r = r.prob(z_values1) | |
fig2, ax2 = plt.subplots() | |
ax2.stem(z_values1, prob_values_t, label=r'Binomial', linefmt='r', markerfmt='ro') | |
ax2.plot(z_values1, prob_values_r, label=r'Normal', lw=3) | |
ax2.set_xlabel("x") | |
ax2.set_ylabel("PDF(x)") | |
ax2.legend() | |
ax2.set_ylim((0, 0.1)) | |
st.pyplot(fig2) | |
st.markdown("") | |
st.markdown("For large values of n, the binomial distribution approximates to the normal distribution with mean = n*p and variance = n*p*(1-p)") | |
st.markdown("") | |
def Bernoulli_dist(): | |
st.header("Bernoulli distribution") | |
p = tfd.Bernoulli(probs=0.5) | |
suc = st.slider('p', 0.0, 1.0, 0.8, 0.1) | |
pmf = r''' | |
pmf = f(x) = p \quad \qquad if x=1 | |
\\ \qquad \qquad \quad \,\,\,= 1-p \quad \,\, if x=0 | |
\\ \,\,\,\quad\qquad= 0 \quad\qquad else | |
''' | |
mean = suc | |
variance = suc*(1-suc) | |
st1 = f''' | |
mean = p = {mean}\\\\ | |
variance = p*(1-p) = {variance:0.3f}\\\\ | |
Entropy = -q lnq - p ln p | |
''' | |
st.latex(pmf) | |
st.latex(st1) | |
q = tfd.Bernoulli(probs = suc) | |
z_values = tf.linspace(0, 1, 2) | |
z_values = tf.cast(z_values, tf.float32) | |
prob_values_p = p.prob(z_values) | |
prob_values_q = q.prob(z_values) | |
fig, ax = plt.subplots() | |
ax.stem(z_values, prob_values_p, label=r'Distribution with unknown parameters', linefmt='b', markerfmt='bo') | |
ax.stem(z_values, prob_values_q, label=r'Distribution with given parameters', linefmt='g', markerfmt='go') | |
ax.set_xlabel("x") | |
ax.set_ylabel("PDF(x)") | |
ax.legend() | |
ax.set_ylim((0, 1)) | |
st.pyplot(fig) | |
st.subheader("Multiplication of two Bernoulli distributions") | |
p1 = st.slider('p1', 0.0, 1.0, 0.2, 0.1) | |
p2 = st.slider('p2', 0.0, 1.0, 0.7, 0.1) | |
rv_p1 = tfd.Bernoulli(probs=p1) | |
rv_p2 = tfd.Bernoulli(probs=p2) | |
prob_values_p1 = rv_p1.prob(z_values) | |
prob_values_p2 = rv_p2.prob(z_values) | |
prob_values_pone = list(prob_values_p1) | |
prob_values_ptwo = list(prob_values_p2) | |
prob_values_pdt = Product(prob_values_pone, prob_values_ptwo, z_values) | |
fig1,(ax1,ax2)=plt.subplots(1,2) | |
ax1.stem(z_values, prob_values_p1, label=r'p1', linefmt='b', markerfmt='bo') | |
ax2.stem(z_values, prob_values_p2, label=r'p2', linefmt='g', markerfmt='go') | |
ax1.set_title("Bernoulli(p1)") | |
ax1.set_xlabel("x") | |
ax1.set_ylabel("PDF(x)") | |
ax1.set_ylim((0, 1)) | |
ax2.set_title("Bernoulli(p2)") | |
ax2.set_xlabel("x") | |
ax2.set_ylim((0, 1)) | |
st.pyplot(fig1) | |
rv_p1p2 = tfd.Bernoulli(probs=p1*p2) | |
prob_values_p1p2 = rv_p1p2.prob(range(len(prob_values_pdt))) | |
fig2, ax3 = plt.subplots() | |
ax3.stem(range(len(prob_values_pdt)), prob_values_pdt, label=r'Product of Bernoulli(p1) and Bernoulli(p2)', linefmt='r', markerfmt='ro') | |
ax3.stem(range(len(prob_values_pdt)), prob_values_p1p2, label=r'Bernoulli(p1*p2)', linefmt='--', markerfmt='bo') | |
ax3.set_xlabel("x") | |
ax3.set_ylabel("PDF(x)") | |
ax3.legend() | |
ax3.set_ylim((0, 1)) | |
ax3.set_xlim((-0.5, 1.5)) | |
st.pyplot(fig2) | |
st.markdown("Multiplication of a Bernoulli(p1) distribution with Bernouli(p2) gives a Bernoulli distribution with parameter=p1*p2") | |
st.subheader("Addition of two Bernoulli distributions") | |
p3 = st.slider('p3', 0.0, 1.0, 0.6, 0.1) | |
rv_p3 = tfd.Bernoulli(probs=p3) | |
prob_values_p3 = list(rv_p3.prob(z_values)) | |
prob_values_sum=Sum(prob_values_p3, prob_values_p3, z_values) | |
fig3, ax4 = plt.subplots() | |
ax4.stem(range(len(prob_values_sum)), prob_values_sum, label=r'Sum of 2 Bernoulli(p3) distributions', linefmt='r', markerfmt='ro') | |
b = tfd.Binomial(total_count=2, probs=p3) | |
prob_values_bin = list(b.prob(range(len(prob_values_sum)))) | |
ax4.stem(range(len(prob_values_sum)), prob_values_bin, label=r'Binomial(2,p3)', linefmt='--', markerfmt='bo') | |
ax4.set_xlabel("x") | |
ax4.set_ylabel("PDF(x)") | |
ax4.legend() | |
ax4.set_ylim((0, 1)) | |
st.pyplot(fig3) | |
st.markdown("The sum of n Bernoulli(p) distributions is a binomial(n,p) distribution") | |
def BetaBinomial(): | |
st.markdown("Beta Binomial distribution") | |
p = tfd.BetaBinomial(8,0.5,1.2) | |
num = st.slider('n', 0, 10, 5, 1) | |
al = st.slider('alpha', 0.0, 5.0, 0.2, 0.1) | |
be = st.slider('beta', 0.0, 5.0, 0.2, 0.1) | |
st1 = r''' | |
Mean = \[ \frac {n \alpha}{\alpha + \beta} \] | |
Variance = \[ \frac {(n \alpha \beta)(\alpha + \beta + n)}{(\alpha + \beta + 1) (\alpha + \beta)^2} \] | |
''' | |
st.latex(st1) | |
q = tfd.BetaBinomial(num, al, be) | |
z_values = tf.linspace(0, 10, 11) | |
z_values = tf.cast(z_values, tf.float32) | |
prob_values_p = p.prob(z_values) | |
prob_values_q = q.prob(z_values) | |
fig, ax = plt.subplots() | |
ax.stem(z_values, prob_values_p, label=r'Distribution with unknown parameters', linefmt='r', markerfmt='ro') | |
ax.stem(z_values, prob_values_q, label=r'Distribution with given parameters', linefmt='--', markerfmt='bo') | |
ax.set_xlabel("x") | |
ax.set_ylabel("PDF(x)") | |
ax.legend() | |
ax.set_ylim((0, 1)) | |
st.pyplot(fig) | |
st.markdown("") | |
st.markdown("Relarionship between BetaBinomial and Uniform-Discrete Distribution") | |
st.markdown("") | |
num2 = st.slider('n2', 0, 10, 5, 1) | |
q2 = tfd.BetaBinomial(num2, 1, 1) | |
prob_values_q2 = q2.prob(z_values) | |
fig2, ax2 = plt.subplots() | |
ax2.stem(z_values, prob_values_q2, label=r'BetaBinomial(n,1,1)', linefmt='r', markerfmt='ro') | |
ax2.set_xlabel("x") | |
ax2.set_ylabel("PDF(x)") | |
ax2.legend() | |
ax2.set_ylim((0, 1)) | |
st.pyplot(fig2) | |
st.markdown("A BetaBinomial(n,alpha,beta) with alpha=beta=1 becomes a uniform-discrete distribution from 0 to n(n2 here)") | |
st.markdown("") | |
st.markdown("Relationship between Binomial and BetaBinomial Distribution") | |
num3 = st.slider('_n', 0, 10, 5, 1) | |
al2 = st.slider('_alpha', 100, 500, 200, 50) | |
be2 = st.slider('_beta', 100, 500, 200, 50) | |
q3 = tfd.BetaBinomial(num3, al2, be2) | |
prob_values_q3 = q3.prob(z_values) | |
success = al2/(al2+be2) | |
q4 = tfd.Binomial(total_count=num3, probs=success) | |
prob_values_q4 = q4.prob(z_values) | |
fig3, ax3 = plt.subplots() | |
ax3.stem(z_values, prob_values_q3, label=r'BetaBinomial', linefmt='r', markerfmt='ro') | |
ax3.stem(z_values, prob_values_q4, label=r'Binomial', linefmt='--', markerfmt='bo') | |
ax3.set_xlabel("x") | |
ax3.set_ylabel("PDF(x)") | |
ax3.legend() | |
ax3.set_ylim((0, 1)) | |
st.pyplot(fig3) | |
st.markdown("For large values of (alpha+beta), the BetaBinomial approximates to the Binomial Distribution with the probanility of success = alpha/(alpha+beta)") | |
st.markdown("") | |
def Geometric(): | |
st.subheader("Geometric distribution") | |
p = tfd.Geometric(probs=0.2) | |
prob = st.slider('prob', 0.0, 1.0, 0.4, 0.1) | |
st1 = r''' | |
Mean=\[ \frac {1}{p} \] | |
Variance= \[ \frac {1-p}{p^2} \] | |
Entropy = \[ \frac { -(1-p) \log_2 {(1-p)} - p \log_2 p} {p}\] | |
''' | |
st.latex(st1) | |
q = tfd.Geometric(probs=prob) | |
z_values = tf.linspace(0, 10, 11) | |
z_values = tf.cast(z_values, tf.float32) | |
prob_values_p = p.prob(z_values) | |
prob_values_q = q.prob(z_values) | |
fig, ax = plt.subplots() | |
ax.stem(z_values, prob_values_p, label=r'Distribution with unknown parameters', linefmt='b', markerfmt='bo') | |
ax.stem(z_values, prob_values_q, label=r'Distribution with given parameters', linefmt='g', markerfmt='go') | |
ax.set_xlabel("x") | |
ax.set_ylabel("PMF(x)") | |
ax.legend() | |
ax.set_ylim((0, 1)) | |
st.pyplot(fig) | |
def Gamma(): | |
st.subheader("Gamma distribution") | |
p = tfd.Gamma(concentration = 3.5, rate = 3 ) | |
concn = st.slider('concentration', 0.0, 10.0, 5.0, 0.5) | |
rat = st.slider('rate', 0.0, 10.0, 2.0, 0.5) | |
cdf = r''' | |
cdf = $\int_a^b f(x)dx$ | |
''' | |
st.latex(cdf) | |
q = tfd.Gamma(concentration = concn, rate = rat ) | |
z_values = tf.linspace(0, 20, 200) | |
z_values = tf.cast(z_values, tf.float32) | |
prob_values_p = p.prob(z_values) | |
prob_values_q = q.prob(z_values) | |
fig, ax = plt.subplots() | |
ax.plot(z_values, prob_values_p, label=r'p', linestyle='--', lw=5, alpha=0.5) | |
ax.plot(z_values, prob_values_q, label=r'q') | |
ax.set_xlabel("x") | |
ax.set_ylabel("PDF(x)") | |
ax.legend() | |
#ax.set_ylim((0, 1)) | |
st.pyplot(fig) | |
kl = tfd.kl_divergence(q, p) | |
st.latex(f"D_{{KL}}(q||p) \\text{{ is : }}{kl:0.2f}") | |
st.subheader("Relationship between Gamma and Exponential Distribution") | |
alpha1=1 | |
st.write("alpha1=1") | |
beta1 = st.slider('beta1', 0.0, 10.0, 5.0, 0.5) | |
q2 = tfd.Gamma(concentration=alpha1, rate=beta1) | |
prob_values_q2 = list(q2.prob(z_values)) | |
q3 = tfd.Exponential(beta1) | |
prob_values_q3 = list(q3.prob(z_values)) | |
fig3, ax3 = plt.subplots() | |
ax3.plot(z_values, prob_values_q2, linestyle='--', lw=3, alpha=0.5, label=r'Gamma(1,beta)') | |
ax3.plot(z_values, prob_values_q3, label=r'Exponential(beta)') | |
ax3.set_xlabel("x") | |
ax3.set_ylabel("PDF(x)") | |
ax3.legend() | |
#ax3.set_ylim((0, 1)) | |
st.pyplot(fig3) | |
def NegBin(): | |
st.markdown("Negative Binomial distribution") | |
p = tfd.NegativeBinomial(total_count=5, probs=.5) | |
count = st.slider('n', 1, 10, 1) | |
prob = st.slider('prob', 0.0, 1.0, 0.1) | |
cdf = r''' | |
cdf = $\int_a^b f(x)dx$ | |
''' | |
st.latex(cdf) | |
q = tfd.NegativeBinomial(total_count=count, probs=prob ) | |
z_values = tf.linspace(0, 100, 100) | |
z_values = tf.cast(z_values, tf.float32) | |
prob_values_p = p.prob(z_values) | |
prob_values_q = q.prob(z_values) | |
fig, ax = plt.subplots() | |
ax.stem(z_values, prob_values_p, label=r'Distribution with unknown parameters', linefmt='b', markerfmt='bo') | |
ax.stem(z_values, prob_values_q, label=r'Distribution with given parameters', linefmt='g', markerfmt='go') | |
ax.set_xlabel("x") | |
ax.set_ylabel("PMF(x)") | |
ax.legend() | |
ax.set_ylim((0, 1)) | |
st.pyplot(fig) | |
if (add_selectbox == "Continuous Univariate"): | |
selection1 = st.sidebar.selectbox( | |
'Choose an Option', | |
('Beta','Cauchy', 'Chi', 'Chi-Squared', 'Exponential', 'Gamma', 'Laplace', 'Normal', | |
'Pareto', 'StudentT', 'Uniform', 'Weibull') | |
) | |
if (selection1 == "Normal"): | |
Normal() | |
elif (selection1 == "Exponential"): | |
Exponential() | |
elif(selection1 == "Uniform"): | |
Uniform() | |
elif(selection1 == "Error"): | |
Error() | |
elif (selection1 == "Cauchy"): | |
Cauchy() | |
elif (selection1 == "Chi"): | |
Chi() | |
elif (selection1 == "Chi-Squared"): | |
Chi_squared() | |
elif (selection1 == "Laplace"): | |
Laplace() | |
elif(selection1=="Pareto"): | |
Pareto() | |
elif(selection1 == "Weibull"): | |
Weibull() | |
elif (selection1 == "Gamma"): | |
Gamma() | |
elif (selection1 == "StudentT"): | |
StudentT() | |
else: | |
Beta() | |
elif (add_selectbox == "Discrete Univariate"): | |
selection1 = st.sidebar.selectbox( | |
'Choose an Option', | |
('Bernoulli', 'Beta-Binomial','Binomial', 'Geometric', 'Negative-Binomial', 'Poisson') | |
) | |
if (selection1 == "Poisson"): | |
Poisson() | |
elif (selection1 == "Bernoulli"): | |
Bernoulli_dist() | |
elif (selection1 == "Binomial"): | |
Binomial() | |
elif (selection1 == "Beta-Binomial"): | |
BetaBinomial() | |
elif (selection1 == "Geometric"): | |
Geometric() | |
elif (selection1 == "Negative-Binomial"): | |
NegBin() | |