|
# Multi-Scale Sub-Band Constant-Q Transform Discriminator for High-Fedility Vocoder |
|
|
|
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2311.14957) |
|
[![demo](https://img.shields.io/badge/Vocoder-Demo-red)](https://vocodexelysium.github.io/MS-SB-CQTD/) |
|
[![hf](https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Models-pink)](https://huggingface.co/amphion/hifigan_speech_bigdata) |
|
|
|
<br> |
|
<div align="center"> |
|
<img src="../../../../imgs/vocoder/gan/MSSBCQTD.png" width="80%"> |
|
</div> |
|
<br> |
|
|
|
This is the official implementation of the paper "[Multi-Scale Sub-Band Constant-Q Transform Discriminator for High-Fidelity Vocoder](https://arxiv.org/abs/2311.14957)". In this recipe, we will illustrate how to train a high quality HiFi-GAN on LibriTTS, VCTK and LJSpeech via utilizing multiple Time-Frequency-Representation-based Discriminators. |
|
|
|
There are four stages in total: |
|
|
|
1. Data preparation |
|
2. Feature extraction |
|
3. Training |
|
4. Inference |
|
|
|
> **NOTE:** You need to run every command of this recipe in the `Amphion` root path: |
|
> ```bash |
|
> cd Amphion |
|
> ``` |
|
|
|
## 1. Data Preparation |
|
|
|
### Dataset Download |
|
|
|
By default, we utilize the three datasets for training: LibriTTS, VCTK and LJSpeech. How to download them is detailed in [here](../../../datasets/README.md). |
|
|
|
### Configuration |
|
|
|
Specify the dataset path in `exp_config.json`. Note that you can change the `dataset` list to use your preferred datasets. |
|
|
|
```json |
|
"dataset": [ |
|
"ljspeech", |
|
"vctk", |
|
"libritts", |
|
], |
|
"dataset_path": { |
|
// TODO: Fill in your dataset path |
|
"ljspeech": "[LJSpeech dataset path]", |
|
"vctk": "[VCTK dataset path]", |
|
"libritts": "[LibriTTS dataset path]", |
|
}, |
|
``` |
|
|
|
## 2. Features Extraction |
|
|
|
For HiFiGAN, only the Mel-Spectrogram and the Output Audio are needed for training. |
|
|
|
### Configuration |
|
|
|
Specify the dataset path and the output path for saving the processed data and the training model in `exp_config.json`: |
|
|
|
```json |
|
// TODO: Fill in the output log path. The default value is "Amphion/ckpts/vocoder" |
|
"log_dir": "ckpts/vocoder", |
|
"preprocess": { |
|
// TODO: Fill in the output data path. The default value is "Amphion/data" |
|
"processed_dir": "data", |
|
... |
|
}, |
|
``` |
|
|
|
### Run |
|
|
|
Run the `run.sh` as the preproces stage (set `--stage 1`). |
|
|
|
```bash |
|
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 1 |
|
``` |
|
|
|
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "1"`. |
|
|
|
## 3. Training |
|
|
|
### Configuration |
|
|
|
We provide the default hyparameters in the `exp_config.json`. They can work on single NVIDIA-24g GPU. You can adjust them based on you GPU machines. |
|
|
|
```json |
|
"train": { |
|
"batch_size": 32, |
|
... |
|
} |
|
``` |
|
|
|
### Run |
|
|
|
Run the `run.sh` as the training stage (set `--stage 2`). Specify a experimental name to run the following command. The tensorboard logs and checkpoints will be saved in `Amphion/ckpts/vocoder/[YourExptName]`. |
|
|
|
```bash |
|
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 2 --name [YourExptName] |
|
``` |
|
|
|
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "0,1,2,3"`. |
|
|
|
If you want to resume or finetune from a pretrained model, run: |
|
|
|
```bash |
|
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 2 \ |
|
--name [YourExptName] \ |
|
--resume_type ["resume" for resuming training and "finetune" for loading parameters only] \ |
|
--checkpoint Amphion/ckpts/vocoder/[YourExptName]/checkpoint \ |
|
``` |
|
|
|
> **NOTE:** For multi-gpu training, the `main_process_port` is set as `29500` in default. You can change it when running `run.sh` by specifying such as `--main_process_port 29501`. |
|
|
|
## 4. Inference |
|
|
|
### Pretrained Vocoder Download |
|
|
|
We trained a HiFiGAN checkpoint with around 685 hours Speech data. The final pretrained checkpoint is released [here](../../../../pretrained/hifigan/README.md). |
|
|
|
### Run |
|
|
|
Run the `run.sh` as the training stage (set `--stage 3`), we provide three different inference modes, including `infer_from_dataset`, `infer_from_feature`, `and infer_from audio`. |
|
|
|
```bash |
|
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 3 \ |
|
--infer_mode [Your chosen inference mode] \ |
|
--infer_datasets [Datasets you want to inference, needed when infer_from_dataset] \ |
|
--infer_feature_dir [Your path to your predicted acoustic features, needed when infer_from_feature] \ |
|
--infer_audio_dir [Your path to your audio files, needed when infer_form_audio] \ |
|
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \ |
|
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \ |
|
``` |
|
|
|
#### a. Inference from Dataset |
|
|
|
Run the `run.sh` with specified datasets, here is an example. |
|
|
|
```bash |
|
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 3 \ |
|
--infer_mode infer_from_dataset \ |
|
--infer_datasets "libritts vctk ljspeech" \ |
|
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \ |
|
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \ |
|
``` |
|
|
|
#### b. Inference from Features |
|
|
|
If you want to inference from your generated acoustic features, you should first prepare your acoustic features into the following structure: |
|
|
|
```plaintext |
|
β£ {infer_feature_dir} |
|
β β£ mels |
|
β β β£ sample1.npy |
|
β β β£ sample2.npy |
|
``` |
|
|
|
Then run the `run.sh` with specificed folder direction, here is an example. |
|
|
|
```bash |
|
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 3 \ |
|
--infer_mode infer_from_feature \ |
|
--infer_feature_dir [Your path to your predicted acoustic features] \ |
|
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \ |
|
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \ |
|
``` |
|
|
|
#### c. Inference from Audios |
|
|
|
If you want to inference from audios for quick analysis synthesis, you should first prepare your audios into the following structure: |
|
|
|
```plaintext |
|
β£ audios |
|
β β£ sample1.wav |
|
β β£ sample2.wav |
|
``` |
|
|
|
Then run the `run.sh` with specificed folder direction, here is an example. |
|
|
|
```bash |
|
sh egs/vocoder/gan/tfr_enhanced_hifigan/run.sh --stage 3 \ |
|
--infer_mode infer_from_audio \ |
|
--infer_audio_dir [Your path to your audio files] \ |
|
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \ |
|
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \ |
|
``` |
|
|
|
## Citations |
|
|
|
```bibtex |
|
@misc{gu2023cqt, |
|
title={Multi-Scale Sub-Band Constant-Q Transform Discriminator for High-Fidelity Vocoder}, |
|
author={Yicheng Gu and Xueyao Zhang and Liumeng Xue and Zhizheng Wu}, |
|
year={2023}, |
|
eprint={2311.14957}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.SD} |
|
} |
|
``` |