|
# Amphion Diffusion-based Vocoder Recipe |
|
|
|
## Supported Model Architectures |
|
|
|
Diffusion-based Vocoders utilize the diffusion process for audio generation, as illustrated below: |
|
|
|
<br> |
|
<div align="center"> |
|
<img src="../../../imgs/vocoder/diffusion/pipeline.png" width="90%"> |
|
</div> |
|
<br> |
|
|
|
Until now, Amphion Diffusion-based Vocoder has supported the following models and training strategies. |
|
|
|
- **Models** |
|
- [DiffWave](https://arxiv.org/pdf/2009.09761) |
|
- **Training and Inference Strategy** |
|
- [DDPM](https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html) |
|
|
|
You can use any vocoder architecture with any dataset you want. There are four steps in total: |
|
|
|
1. Data preparation |
|
2. Feature extraction |
|
3. Training |
|
4. Inference |
|
|
|
> **NOTE:** You need to run every command of this recipe in the `Amphion` root path: |
|
> ```bash |
|
> cd Amphion |
|
> ``` |
|
|
|
## 1. Data Preparation |
|
|
|
You can train the vocoder with any datasets. Amphion's supported open-source datasets are detailed [here](../../../datasets/README.md). |
|
|
|
### Configuration |
|
|
|
Specify the dataset path in `exp_config_base.json`. Note that you can change the `dataset` list to use your preferred datasets. |
|
|
|
```json |
|
"dataset": [ |
|
"csd", |
|
"kising", |
|
"m4singer", |
|
"nus48e", |
|
"opencpop", |
|
"opensinger", |
|
"opera", |
|
"pjs", |
|
"popbutfy", |
|
"popcs", |
|
"ljspeech", |
|
"vctk", |
|
"libritts", |
|
], |
|
"dataset_path": { |
|
// TODO: Fill in your dataset path |
|
"csd": "[dataset path]", |
|
"kising": "[dataset path]", |
|
"m4singer": "[dataset path]", |
|
"nus48e": "[dataset path]", |
|
"opencpop": "[dataset path]", |
|
"opensinger": "[dataset path]", |
|
"opera": "[dataset path]", |
|
"pjs": "[dataset path]", |
|
"popbutfy": "[dataset path]", |
|
"popcs": "[dataset path]", |
|
"ljspeech": "[dataset path]", |
|
"vctk": "[dataset path]", |
|
"libritts": "[dataset path]", |
|
}, |
|
``` |
|
|
|
### 2. Feature Extraction |
|
|
|
The needed features are speficied in the individual vocoder direction so it doesn't require any modification. |
|
|
|
### Configuration |
|
|
|
Specify the dataset path and the output path for saving the processed data and the training model in `exp_config_base.json`: |
|
|
|
```json |
|
// TODO: Fill in the output log path. The default value is "Amphion/ckpts/vocoder" |
|
"log_dir": "ckpts/vocoder", |
|
"preprocess": { |
|
// TODO: Fill in the output data path. The default value is "Amphion/data" |
|
"processed_dir": "data", |
|
... |
|
}, |
|
``` |
|
|
|
### Run |
|
|
|
Run the `run.sh` as the preproces stage (set `--stage 1`). |
|
|
|
```bash |
|
sh egs/vocoder/diffusion/{vocoder_name}/run.sh --stage 1 |
|
``` |
|
|
|
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "1"`. |
|
|
|
## 3. Training |
|
|
|
### Configuration |
|
|
|
We provide the default hyparameters in the `exp_config_base.json`. They can work on single NVIDIA-24g GPU. You can adjust them based on you GPU machines. |
|
|
|
```json |
|
"train": { |
|
"batch_size": 32, |
|
"max_epoch": 1000000, |
|
"save_checkpoint_stride": [20], |
|
"adamw": { |
|
"lr": 2.0e-4, |
|
"adam_b1": 0.8, |
|
"adam_b2": 0.99 |
|
}, |
|
"exponential_lr": { |
|
"lr_decay": 0.999 |
|
}, |
|
} |
|
``` |
|
|
|
### Run |
|
|
|
Run the `run.sh` as the training stage (set `--stage 2`). Specify a experimental name to run the following command. The tensorboard logs and checkpoints will be saved in `Amphion/ckpts/vocoder/[YourExptName]`. |
|
|
|
```bash |
|
sh egs/vocoder/diffusion/{vocoder_name}/run.sh --stage 2 --name [YourExptName] |
|
``` |
|
|
|
> **NOTE:** The `CUDA_VISIBLE_DEVICES` is set as `"0"` in default. You can change it when running `run.sh` by specifying such as `--gpu "0,1,2,3"`. |
|
|
|
If you want to resume or finetune from a pretrained model, run: |
|
|
|
```bash |
|
sh egs/vocoder/diffusion/{vocoder_name}/run.sh --stage 2 \ |
|
--name [YourExptName] \ |
|
--resume_type ["resume" for resuming training and "finetune" for loading parameters only] \ |
|
--checkpoint Amphion/ckpts/vocoder/[YourExptName]/checkpoint \ |
|
``` |
|
|
|
> **NOTE:** For multi-gpu training, the `main_process_port` is set as `29500` in default. You can change it when running `run.sh` by specifying such as `--main_process_port 29501`. |
|
|
|
## 4. Inference |
|
|
|
### Run |
|
|
|
Run the `run.sh` as the training stage (set `--stage 3`), we provide three different inference modes, including `infer_from_dataset`, `infer_from_feature`, `and infer_from_audio`. |
|
|
|
```bash |
|
sh egs/vocoder/diffusion/{vocoder_name}/run.sh --stage 3 \ |
|
--infer_mode [Your chosen inference mode] \ |
|
--infer_datasets [Datasets you want to inference, needed when infer_from_dataset] \ |
|
--infer_feature_dir [Your path to your predicted acoustic features, needed when infer_from_feature] \ |
|
--infer_audio_dir [Your path to your audio files, needed when infer_form_audio] \ |
|
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \ |
|
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \ |
|
``` |
|
|
|
#### a. Inference from Dataset |
|
|
|
Run the `run.sh` with specified datasets, here is an example. |
|
|
|
```bash |
|
sh egs/vocoder/diffusion/{vocoder_name}/run.sh --stage 3 \ |
|
--infer_mode infer_from_dataset \ |
|
--infer_datasets "libritts vctk ljspeech" \ |
|
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \ |
|
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \ |
|
``` |
|
|
|
#### b. Inference from Features |
|
|
|
If you want to inference from your generated acoustic features, you should first prepare your acoustic features into the following structure: |
|
|
|
```plaintext |
|
β£ {infer_feature_dir} |
|
β β£ mels |
|
β β β£ sample1.npy |
|
β β β£ sample2.npy |
|
``` |
|
|
|
Then run the `run.sh` with specificed folder direction, here is an example. |
|
|
|
```bash |
|
sh egs/vocoder/diffusion/{vocoder_name}/run.sh --stage 3 \ |
|
--infer_mode infer_from_feature \ |
|
--infer_feature_dir [Your path to your predicted acoustic features] \ |
|
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \ |
|
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \ |
|
``` |
|
|
|
#### c. Inference from Audios |
|
|
|
If you want to inference from audios for quick analysis synthesis, you should first prepare your audios into the following structure: |
|
|
|
```plaintext |
|
β£ audios |
|
β β£ sample1.wav |
|
β β£ sample2.wav |
|
``` |
|
|
|
Then run the `run.sh` with specificed folder direction, here is an example. |
|
|
|
```bash |
|
sh egs/vocoder/diffusion/{vocoder_name}/run.sh --stage 3 \ |
|
--infer_mode infer_from_audio \ |
|
--infer_audio_dir [Your path to your audio files] \ |
|
--infer_expt_dir Amphion/ckpts/vocoder/[YourExptName] \ |
|
--infer_output_dir Amphion/ckpts/vocoder/[YourExptName]/result \ |
|
``` |
|
|