File size: 10,708 Bytes
8920568
b3c9d45
763a979
4f59094
 
7e798dd
b3c9d45
7e798dd
b3c9d45
4f59094
b3c9d45
 
7e798dd
b3c9d45
7e798dd
b3c9d45
 
 
7e798dd
b3c9d45
 
 
359e36e
8ad803e
 
 
 
 
76b43fa
8ad803e
 
 
 
 
76b43fa
1cbad75
83738aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c45673
b63dcce
 
 
 
b3c9d45
359e36e
 
 
b3c9d45
 
 
a23b013
 
1cbad75
4fe001a
b3c9d45
 
a23b013
b3c9d45
 
 
 
 
 
 
c8ca045
b3c9d45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cbad75
 
 
 
 
 
 
6a2c3c8
4f59094
1cbad75
359e36e
4f59094
1cbad75
 
a23b013
7e493b4
1cbad75
5c45673
4f59094
 
359e36e
 
 
1cbad75
 
359e36e
 
 
 
 
 
 
4fe001a
 
 
 
230f893
 
359e36e
 
 
 
86fd1b3
359e36e
 
 
 
6a2c3c8
359e36e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

import altair

import gradio as gr
from math import sqrt
import matplotlib

matplotlib.use("Agg")

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

import datetime

from sklearn.linear_model import LinearRegression
from sklearn.metrics import log_loss
from sklearn.preprocessing import StandardScaler

import requests
from bs4 import BeautifulSoup as bs
from requests_html import AsyncHTMLSession

import codecs
import io
import random
import requests
import time
from datetime import date, timedelta
from tqdm import tqdm
from typing import Generator, Tuple

import numpy as np
import pandas as pd


def date_range(
    start: date, stop: date, step: timedelta = timedelta(1)
) -> Generator[date, None, None]:
    """startからendまで日付をstep日ずつループさせるジェネレータ"""
    current = start
    while current < stop:
        yield current
        current += step


def get_url(download_date: date) -> Tuple[str, str]:
    """ダウンロードするURLと日付の文字列を返す"""
    month = download_date.strftime("%Y%m")
    day = download_date.strftime("%Y%m%d")
    return (
        f"https://www.shijou-nippo.metro.tokyo.lg.jp/SN/{month}/{day}/Sui/Sui_K1.csv",
        day,
    )


def content_wrap(content):
    """1行目にヘッダ行が来るまでスキップする"""
    buffer = ""
    first = True
    for line in io.BytesIO(content):
        line_str = codecs.decode(line, "shift-jis")
        if first:
            if "品名" in line_str:
                first = False
                buffer = line_str
            else:
                continue
        else:
            buffer += line_str
    return io.StringIO(buffer)


def insert_data(data, day, low_price, center_price, high_price, quantity):
    """ "データをリストに追加する"""
    data["date"].append(day)
    data["low_price"].append(low_price)
    data["center_price"].append(center_price)
    data["high_price"].append(high_price)
    data["quantity"].append(quantity)


def to_numeric(x):
    """文字列を数値に変換する"""
    if isinstance(x, str):
        return float(x)
    else:
        return x


def get_fish_price_data(start_date: date, end_date: date) -> pd.core.frame.DataFrame:
    """
    東京卸売市場からデータを引っ張ってくる

    :param start_date: 開始日
    :param end_date: 終了日
    :return: あじの値段を結合したデータ
    """
    data = {
        "date": [],
        "low_price": [],
        "center_price": [],
        "high_price": [],
        "quantity": [],
    }
    iterator = tqdm(
        date_range(start_date, end_date), total=(end_date - start_date).days
    )

    for download_date in iterator:
        url, day = get_url(download_date)
        iterator.set_description(day)
        response = requests.get(url)

        # URLが存在しないとき
        if response.status_code == 404:
            insert_data(data, day, np.nan, np.nan, np.nan, 0)
            continue
        assert (
            response.status_code == 200
        ), f"Unexpected HTTP response. Please check the website {url}."

        df = pd.read_csv(content_wrap(response.content))

        # 欠損値補完
        price_cols = ["安値(円)", "中値(円)", "高値(円)"]
        for c in price_cols:
            df[c].mask(df[c] == "-", np.nan, inplace=True)
            df[c].mask(df[c] == "−", np.nan, inplace=True)
        df["卸売数量"].mask(df["卸売数量"] == "-", np.nan, inplace=True)
        df["卸売数量"].mask(df["卸売数量"] == "−", np.nan, inplace=True)

        # 長崎で獲れたあじの中値と卸売数量
        # 品目 == あじ の行だけ抽出
        df_aji = df.loc[df["品名"] == "あじ", ["卸売数量"] + price_cols]

        # あじの販売がなかったら欠損扱いに
        if len(df_aji) == 0:
            insert_data(data, day, np.nan, np.nan, np.nan, 0)
            continue

        isnan = lambda x: isinstance(x, float) and np.isnan(x)
        # 産地ごと(?)の鯵の販売実績を調べる
        low_prices = []
        center_prices = []
        high_prices = []
        quantities = []
        for i, row in enumerate(df_aji.iloc):
            lp, cp, hp, q = row[price_cols + ["卸売数量"]]
            lp, cp, hp, q = (
                to_numeric(lp),
                to_numeric(cp),
                to_numeric(hp),
                to_numeric(q),
            )

            # 中値だけが記録されている -> 価格帯が1個だけなので高値、安値も中値と同じにしておく
            if isnan(lp) and isnan(hp) and (not isnan(cp)):
                low_prices.append(cp)
                center_prices.append(cp)
                high_prices.append(cp)

            # 高値・安値があり中値がない -> 価格帯2個、とりあえず両者の平均を中値とする
            elif (not isnan(lp)) and (not isnan(hp)) and isnan(cp):
                low_prices.append(lp)
                center_prices.append((lp + hp) / 2)
                high_prices.append(hp)
            else:
                low_prices.append(lp)
                center_prices.append(cp)
                high_prices.append(hp)

            if isnan(row["卸売数量"]):
                quantities.append(0)
            else:
                quantities.append(q)

        low_price = int(min(low_prices))
        center_price = int(sum(center_prices) / len(center_prices))
        high_price = int(max(high_prices))
        quantity = int(float(sum(quantities)))

        # 保存
        insert_data(data, day, low_price, center_price, high_price, quantity)
        # 短期間にアクセスが集中しないようにクールタイムを設定
        time.sleep(max(0.5 + random.normalvariate(0, 0.3), 0.1))
    # DataFrameを作成
    df = pd.DataFrame(data)
    return df

# Webページを取得し解析する
load_url = "https://www.football-lab.jp/kyot/match/"
html = requests.get(load_url)
soup = bs(html.content, "html.parser")

df_train = pd.read_csv('df_train.csv')
X = df_train.drop('audience', axis=1)
y = df_train['audience']
linear_regression = LinearRegression()
model = linear_regression.fit(X,y)

d_today = datetime.date.today()
d_tom = datetime.date.today() + datetime.timedelta(days = 1)
d_y = datetime.date.today() + datetime.timedelta(days = -1)

# 前日のあじデータ抽出
if __name__ == "__main__":
    start_date = d_y
    end_date = d_today
    df_aji_pre = get_fish_price_data(start_date=start_date, end_date=end_date)
    df_aji_pre['date'] = df_aji_pre['date'].astype(int)

url23 = 'https://www.football-lab.jp/ka-f/match/'
dfs23 = pd.read_html(url23)

#シーズン毎に分類
res23 = pd.DataFrame([['S2023']]*len(dfs23[0])).join(dfs23)

df = res23

df = df.rename(columns={'会場': 'stadium', 0: 'year', '開催日': 'date', '観客数': 'audience'})
df = df.query('stadium=="等々力"').reset_index()
df = df.query('audience.notna()', engine='python').reset_index()
df = df[['audience', 'year', 'date']]
#seasonカラムから年を抽出
df["year"] = df["year"].apply(lambda x: str(x)[1:5])
#開催日から月と日を分割
df['month']  = df['date'].str.split(pat='.', expand=True)[0]
df['day'] = df['date'].str.split(pat='.', expand=True)[1]
#数値データを日付データに変換
df['date'] = pd.to_datetime({'year': df['year'], 'month': df['month'], 'day': df['day']})
#日付昇順に並び替える
df = df.sort_values('date', ascending=True)
df['date_ymd'] = pd.to_datetime(df['date']).dt.strftime('%Y%m%d')
df['date_ym'] = pd.to_datetime(df['date']).dt.strftime('%Y%m')
df["date_ymd"] = df["date_ymd"].astype(int)
df['date_before'] = df['date_ymd'] - 1
df["date_before"] = df["date_before"]
df = df[['audience', 'date_ymd', 'date_before']] 
df['last_audience'] = df['audience'].shift(1)

df_pre = df.tail(1).reset_index()
df_pre = df_pre.drop('index', axis=1)
df_aji_ft_pre = pd.concat([df_pre, df_aji_pre], axis=1)
df_aji_ft_pre = df_aji_ft_pre[['date_ymd', 'audience', 'low_price', 'center_price', 'high_price', 'quantity']]
df_aji_ft_pre = df_aji_ft_pre.rename(columns={'audience': 'last_audience', 0: 'year', '開催日': 'date_ymd', '観客数': 'audience'})
df_aji_ft_pre ['last_audience'] = df_aji_ft_pre ['last_audience'].astype(int)

pred = linear_regression.predict(df_aji_ft_pre)
df_aji_ft_pre['audience_pred'] = pred
df_aji_ft_pre['date_ymd'] = df_aji_ft_pre['date_ymd'].astype(int)

def outbreak(date):
  if date:    

    fig = plt.figure()
    plt.plot(df_train['date_ymd'], df_train['audience'], label='original')
    plt.plot(df_aji_ft_pre['date_ymd'], df_aji_ft_pre['audience_pred'], '*', label='predict')
    plt.title(f"today prediction value : {pred}")
    plt.ylabel("audience")
    plt.xlabel("Days")
    plt.legend()
    return fig

with gr.Blocks() as demo:
    gr.Markdown(
                            """
                            # 川崎フロンターレの観客動員数の予測
                             川崎フロンターレの等々力陸上競技場での試合の観客数を「あじ」の価格をもとに予測する。
                            ## 使用データ
                             * 東京卸売市場日報
                             * Football Lab 
                            ## 予測ロジック
                            観客動員数は雨天か否かで左右されると考えられる。そこで雨天の可能性をあじの価格を利用し表した。
                            一般的に雨天の場合、低気圧の影響で海面が上昇し漁に出ることが難しくなる。
                            そのため漁獲量が減少し、あじの価格が上昇すると考えられる。
                            ## モデルについて
                            モデル名:sklearn
                            特徴量:予測日前日のあじの高値、予測日前日のあじの中値、予測日前日のあじの安値、
                            予測日前日のあじの卸売数量、等々力競技場での川崎フロンターレの前回試合の観客数
                            ## 注意点
                            予測日前日のあじのデータがない場合はErrorとなります。
                             """
                        )
    with gr.Row():
      with gr.Column():
        date_input = gr.Checkbox(label='Do you want to predict audiences?')
        prediction_btn = gr.Button(value="predict")
      with gr.Column():
        prediction = gr.Plot(label = "時系列プロット")
    prediction_btn.click(outbreak, inputs=date_input, outputs=prediction)

demo.launch()