nlp-qual-space / app.py
maxspad's picture
added a checkbox with default false for word importances
39b062f
raw
history blame
7.12 kB
import streamlit as st
import transformers as tf
import pandas as pd
from datetime import datetime
from plotly import graph_objects as go
from transformers_interpret import SequenceClassificationExplainer
from annotated_text import annotated_text
from palettable.scientific.sequential import Devon_10_r
from palettable.colorbrewer.diverging import RdYlGn_10, PuOr_10, BrBG_10
from overview import NQDOverview
import torch
cuda_available = torch.cuda.is_available()
print(f"Is CUDA available: {cuda_available}")
if cuda_available:
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
# Function to load and cache models
@st.experimental_singleton(show_spinner=False)
def load_model(username, prefix, model_name):
p = tf.pipeline('text-classification', f'{username}/{prefix}-{model_name}', return_all_scores=True)
return p
@st.experimental_singleton(show_spinner=False)
def load_pickle(f):
return pd.read_pickle(f)
def get_results(model, c):
res = model(c)[0]
scores = [r['score'] for r in res]
label = max(range(len(scores)), key=lambda i: scores[i])
# label = float(res['label'].split('_')[1])
# scores = res['score']
return {'label': label, 'scores': scores}
def run_models(model_names, models, c):
results = {}
for mn in model_names:
results[mn] = get_results(models[mn], c)
return results
st.title('Assess the *QuAL*ity of your feedback')
st.caption(
"""Medical education requires high-quality *written* feedback,
but evaluating these *supervisor narrative comments* is time-consuming.
The QuAL score has validity evidence for measuring the quality of short
comments in this context. We developed a NLP/ML-powered tool to
assess written comment quality via the QuAL score with high accuracy.
See our paper in *Academic Medicine* at [https://doi.org/10.1097/ACM.0000000000005634](https://doi.org/10.1097/ACM.0000000000005634)
*Try it for yourself!*
""")
### Load models
# Specify which models to load
USERNAME = 'maxspad'
PREFIX = 'nlp-qual'
models_to_load = ['qual', 'q1', 'q2i', 'q3i']
n_models = float(len(models_to_load))
models = {}
# Show a progress bar while models are downloading,
# then hide it when done
lc_placeholder = st.empty()
loader_container = lc_placeholder.container()
loader_container.caption('Loading models... please wait...')
pbar = loader_container.progress(0.0)
for i, mn in enumerate(models_to_load):
pbar.progress((i+1.0) / n_models)
models[mn] = load_model(USERNAME, PREFIX, mn)
lc_placeholder.empty()
### Load example data
examples = load_pickle('test.pkl')
### Process input
ex = examples['comment'].sample(1, random_state=int(datetime.now().timestamp())).tolist()[0]
try:
ex = ex.strip().replace('_x000D_', '').replace('nan', 'blank')
except:
ex = 'blank'
if 'comment' not in st.session_state:
st.session_state['comment'] = ex
with st.form('comment_form'):
comment = st.text_area('Try a comment:', value=st.session_state['comment'])
left_col, right_col = st.columns([1,9], gap='medium')
submitted = left_col.form_submit_button('Submit')
trying_example = right_col.form_submit_button('Try an example!')
if submitted:
st.session_state['button_clicked'] = 'submit'
st.session_state['comment'] = comment
st.experimental_rerun()
elif trying_example:
st.session_state['button_clicked'] = 'example'
st.session_state['comment'] = ex
st.experimental_rerun()
results = run_models(models_to_load, models, st.session_state['comment'])
#Modify results to sum the QuAL score and to ignore Q3 if Q2 no suggestion
if results['q2i']['label'] == 1:
results['q3i']['label'] = 1 # can't have connection if no suggestion
results['qual']['label'] = results['q1']['label'] + (not results['q2i']['label']) + (not results['q3i']['label'])
overview = NQDOverview(st, results)
overview.draw()
def rescale(x):
return (x + 1.0) / 2.0
def get_explained_words(comment, pipe, label, cmap):
cls_explainer = SequenceClassificationExplainer(
pipe.model,
pipe.tokenizer)
word_attributions = cls_explainer(comment, class_name=label)[1:-1]
# Get rid of "##"
to_disp = [
(word, '', f'rgba{tuple([int(c*255) for c in cmap.mpl_colormap(rescale(word_score))])}')
for word, word_score in word_attributions
]
return to_disp
qual_map = {
0: 'minimal',
1: 'very low',
2: 'low',
3: 'average',
4: 'above average',
5: 'excellent'
}
q1_map = {
0: "minimal",
1: "low",
2: "moderate",
3: "high"
}
q2i_map = {
0: "did",
1: "did not"
}
with st.expander('Expand to explore further'):
st.write(f'Your comment was rated as a QuAL score of **{results["qual"]["label"]}**, indicating **{qual_map[results["qual"]["label"]]}** quality feedback.')
do_word_importances = st.checkbox("Calculate word importance. This provides more detail on model reasoning below, but takes much longer to compute.",
value=False)
st.markdown('### Level of Detail')
st.write(f"The model identified a **{q1_map[results['q1']['label']]}** level of detail in your comment.")
if do_word_importances:
st.write("Below are words that pointed the model toward (green) or against (red) identifying a high level of detail:")
with st.spinner("Calculating word importances, may take a while..."):
annotated_text(get_explained_words(st.session_state['comment'], models['q1'], 'LABEL_3', RdYlGn_10))
st.markdown('### Suggestion for Improvement')
st.write(f"The model **{q2i_map[results['q2i']['label']]}** predict that you provided a suggestion for improvement in your comment.")
if do_word_importances:
st.write(f"Below are words that pointed the model toward (green) or against (red) identifying a suggestion for improvement:")
with st.spinner("Calculating word importances, may take a while..."):
annotated_text(get_explained_words(st.session_state['comment'], models['q2i'], 'LABEL_0', RdYlGn_10))
if results['q2i']['label'] == 0:
st.markdown('### Suggestion Linking')
st.write(f"The model **{q2i_map[results['q3i']['label']]}** predict that you linked your suggestion")
if do_word_importances:
st.write(f"Below are words that pointed the model toward (green) or against (red) identifying a linked suggestion:")
with st.spinner("Calculating word importances, may take a while..."):
annotated_text(get_explained_words(st.session_state['comment'], models['q3i'], 'LABEL_0', RdYlGn_10))
# annotated_text(to_disp)
# cls_explainer = SequenceClassificationExplainer(
# models['q1'].model,
# models['q1'].tokenizer)
# word_attributions = cls_explainer(st.session_state['comment'], class_name='LABEL_3')[1:-1]
# to_disp = [
# (word, f'{word_score:.2f}', f'rgba{tuple([int(c*255) for c in Devon_10_r.mpl_colormap(word_score)])}')
# for word, word_score in word_attributions
# ]
# print(to_disp)
# annotated_text(to_disp)