File size: 10,878 Bytes
2d9a728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import os
import logging
from collections import OrderedDict
from pkg_resources import packaging
from .simple_tokenizer import SimpleTokenizer as _Tokenizer

import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
import torch.utils.checkpoint as checkpoint
import functools

logger = logging.getLogger(__name__)


# On P1, model extracted from https://huggingface.co/laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K
MODEL_PATH = 'https://huggingface.co/laion'
_MODELS = {
    "ViT-L/14": os.path.join(MODEL_PATH, "CLIP-ViT-L-14-DataComp.XL-s13B-b90K", "vit_l14_text.pth"),
    "ViT-B/16": os.path.join(MODEL_PATH, "CLIP-ViT-B-16-DataComp.XL-s13B-b90K", "vit_b16_text.pth"),
}


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""

    def forward(self, x: torch.Tensor):
        orig_type = x.dtype
        ret = super().forward(x.type(torch.float32))
        return ret.type(orig_type)


class QuickGELU(nn.Module):
    def forward(self, x: torch.Tensor):
        return x * torch.sigmoid(1.702 * x)


class ResidualAttentionBlock(nn.Module):
    def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
        super().__init__()

        self.attn = nn.MultiheadAttention(d_model, n_head)
        self.ln_1 = LayerNorm(d_model)
        self.mlp = nn.Sequential(OrderedDict([
            ("c_fc", nn.Linear(d_model, d_model * 4)),
            ("gelu", QuickGELU()),
            ("c_proj", nn.Linear(d_model * 4, d_model))
        ]))
        self.ln_2 = LayerNorm(d_model)
        self.attn_mask = attn_mask

    def attention(self, x: torch.Tensor):
        self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
        return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]

    def forward(self, x: torch.Tensor):
        x = x + self.attention(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x


class Transformer(nn.Module):
    def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None,
                 checkpoint_num: int = 0):
        super().__init__()
        self.width = width
        self.layers = layers
        self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])

        self.checkpoint_num = checkpoint_num

    def forward(self, x: torch.Tensor):
        if self.checkpoint_num > 0:
            segments = min(self.checkpoint_num, len(self.resblocks))
            return checkpoint.checkpoint_sequential(self.resblocks, segments, x)
        else:
            return self.resblocks(x)


class CLIP_TEXT(nn.Module):
    def __init__(
            self,
            embed_dim: int,
            context_length: int,
            vocab_size: int,
            transformer_width: int,
            transformer_heads: int,
            transformer_layers: int,
            checkpoint_num: int,
        ):
        super().__init__()

        self.context_length = context_length
        self._tokenizer = _Tokenizer()

        self.transformer = Transformer(
            width=transformer_width,
            layers=transformer_layers,
            heads=transformer_heads,
            attn_mask=self.build_attention_mask(),
            checkpoint_num=checkpoint_num,
        )

        self.vocab_size = vocab_size
        self.token_embedding = nn.Embedding(vocab_size, transformer_width)
        self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
        self.ln_final = LayerNorm(transformer_width)

        self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
    
    def no_weight_decay(self):
        return {'token_embedding', 'positional_embedding'}

    @functools.lru_cache(maxsize=None)
    def build_attention_mask(self):
        # lazily create causal attention mask, with full attention between the vision tokens
        # pytorch uses additive attention mask; fill with -inf
        mask = torch.empty(self.context_length, self.context_length)
        mask.fill_(float("-inf"))
        mask.triu_(1)  # zero out the lower diagonal
        return mask

    def tokenize(self, texts, context_length=77, truncate=True):
        """
        Returns the tokenized representation of given input string(s)
        Parameters
        ----------
        texts : Union[str, List[str]]
            An input string or a list of input strings to tokenize
        context_length : int
            The context length to use; all CLIP models use 77 as the context length
        truncate: bool
            Whether to truncate the text in case its encoding is longer than the context length
        Returns
        -------
        A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length].
        We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long.
        """
        if isinstance(texts, str):
            texts = [texts]

        sot_token = self._tokenizer.encoder["<|startoftext|>"]
        eot_token = self._tokenizer.encoder["<|endoftext|>"]
        all_tokens = [[sot_token] + self._tokenizer.encode(text) + [eot_token] for text in texts]
        if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"):
            result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
        else:
            result = torch.zeros(len(all_tokens), context_length, dtype=torch.int)

        for i, tokens in enumerate(all_tokens):
            if len(tokens) > context_length:
                if truncate:
                    tokens = tokens[:context_length]
                    tokens[-1] = eot_token
                else:
                    raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
            result[i, :len(tokens)] = torch.tensor(tokens)

        return result

    def forward(self, text):
        x = self.token_embedding(text)  # [batch_size, n_ctx, d_model]

        x = x + self.positional_embedding
        x = x.permute(1, 0, 2)  # NLD -> LND
        x = self.transformer(x)
        x = x.permute(1, 0, 2)  # LND -> NLD
        x = self.ln_final(x)

        # x.shape = [batch_size, n_ctx, transformer.width]
        # take features from the eot embedding (eot_token is the highest number in each sequence)
        x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection

        return x


def clip_text_b16(
    embed_dim=512,
    context_length=77,
    vocab_size=49408,
    transformer_width=512,
    transformer_heads=8,
    transformer_layers=12,
    checkpoint_num=0,
    pretrained=True,
):
    # raise NotImplementedError
    model = CLIP_TEXT(
        embed_dim,
        context_length,
        vocab_size,
        transformer_width,
        transformer_heads,
        transformer_layers,
        checkpoint_num,
    )
    # pretrained = _MODELS["ViT-B/16"]
    # logger.info(f"Load pretrained weights from {pretrained}")
    # state_dict = torch.load(pretrained, map_location='cpu')
    # model.load_state_dict(state_dict, strict=False)
    # return model.eval()
    if pretrained:
        if isinstance(pretrained, str) and pretrained != "bert-base-uncased":
            pretrained = _MODELS[pretrained]
        else:
            pretrained = _MODELS["ViT-B/16"]
        logger.info(f"Load pretrained weights from {pretrained}")
        state_dict = torch.load(pretrained, map_location='cpu')
        if context_length != state_dict["positional_embedding"].size(0):
            # assert context_length < state_dict["positional_embedding"].size(0), "Cannot increase context length."
            print(f"Resize positional embedding from {state_dict['positional_embedding'].size(0)} to {context_length}")
            if context_length < state_dict["positional_embedding"].size(0):
                state_dict["positional_embedding"] = state_dict["positional_embedding"][:context_length]
            else:
                state_dict["positional_embedding"] = F.pad(
                    state_dict["positional_embedding"],
                    (0, 0, 0, context_length - state_dict["positional_embedding"].size(0)),
                    value=0,
                )

        message = model.load_state_dict(state_dict, strict=False)
        print(f"Load pretrained weights from {pretrained}: {message}")
    return model.eval()


def clip_text_l14(
    embed_dim=768,
    context_length=77,
    vocab_size=49408,
    transformer_width=768,
    transformer_heads=12,
    transformer_layers=12,
    checkpoint_num=0,
    pretrained=True,
):
    model = CLIP_TEXT(
        embed_dim,
        context_length,
        vocab_size,
        transformer_width,
        transformer_heads,
        transformer_layers,
        checkpoint_num,
    )
    if pretrained:
        if isinstance(pretrained, str) and pretrained != "bert-base-uncased":
            pretrained = _MODELS[pretrained]
        else:
            pretrained = _MODELS["ViT-L/14"]
        logger.info(f"Load pretrained weights from {pretrained}")
        state_dict = torch.load(pretrained, map_location='cpu')
        if context_length != state_dict["positional_embedding"].size(0):
            # assert context_length < state_dict["positional_embedding"].size(0), "Cannot increase context length."
            print(f"Resize positional embedding from {state_dict['positional_embedding'].size(0)} to {context_length}")
            if context_length < state_dict["positional_embedding"].size(0):
                state_dict["positional_embedding"] = state_dict["positional_embedding"][:context_length]
            else:
                state_dict["positional_embedding"] = F.pad(
                    state_dict["positional_embedding"],
                    (0, 0, 0, context_length - state_dict["positional_embedding"].size(0)),
                    value=0,
                )

        message = model.load_state_dict(state_dict, strict=False)
        print(f"Load pretrained weights from {pretrained}: {message}")
    return model.eval()


def clip_text_l14_336(
    embed_dim=768,
    context_length=77,
    vocab_size=49408,
    transformer_width=768,
    transformer_heads=12,
    transformer_layers=12,
):
    raise NotImplementedError
    model = CLIP_TEXT(
        embed_dim,
        context_length,
        vocab_size,
        transformer_width,
        transformer_heads,
        transformer_layers
    )
    pretrained = _MODELS["ViT-L/14_336"]
    logger.info(f"Load pretrained weights from {pretrained}")
    state_dict = torch.load(pretrained, map_location='cpu')
    model.load_state_dict(state_dict, strict=False)
    return model.eval()


def build_clip(config):
    model_cls = config.text_encoder.clip_teacher
    model = eval(model_cls)()
    return model