Spaces:
Sleeping
Sleeping
File size: 12,454 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import numpy as np
import cv2
import os
import io
import torch
from torch import nn
import sys
from models.backbones.internvideo2 import pretrain_internvideo2_1b_patch14_224
from models.backbones.bert.builder import build_bert
# from models.criterions import get_sim
from models.backbones.internvideo2.pos_embed import interpolate_pos_embed_internvideo2_new
from models.backbones.bert.tokenization_bert import BertTokenizer
def _frame_from_video(video):
while video.isOpened():
success, frame = video.read()
if success:
yield frame
else:
break
v_mean = np.array([0.485, 0.456, 0.406]).reshape(1,1,3)
v_std = np.array([0.229, 0.224, 0.225]).reshape(1,1,3)
def normalize(data):
return (data/255.0-v_mean)/v_std
def frames2tensor(vid_list, fnum=8, target_size=(224, 224), device=torch.device('cuda')):
assert(len(vid_list) >= fnum)
step = len(vid_list) // fnum
vid_list = vid_list[::step][:fnum]
vid_list = [cv2.resize(x[:,:,::-1], target_size) for x in vid_list]
vid_tube = [np.expand_dims(normalize(x), axis=(0, 1)) for x in vid_list]
vid_tube = np.concatenate(vid_tube, axis=1)
vid_tube = np.transpose(vid_tube, (0, 1, 4, 2, 3))
vid_tube = torch.from_numpy(vid_tube).to(device, non_blocking=True).float()
return vid_tube
def get_text_feat_dict(texts, clip, text_feat_d={}):
for t in texts:
feat = clip.get_txt_feat(t)
text_feat_d[t] = feat
return text_feat_d
def get_vid_feat(frames, vlm):
return vlm.get_vid_features(frames)
def retrieve_text(frames,
texts,
model,
topk:int=5,
config: dict={},
device=torch.device('cuda')):
vlm = model
vlm = vlm.to(device)
fn = config.get('num_frames', 8)
size_t = config.get('size_t', 224)
frames_tensor = frames2tensor(frames, fnum=fn, target_size=(size_t, size_t), device=device)
vid_feat = vlm.get_vid_features(frames_tensor)
print('Video', vid_feat.mean(dim=-1))
text_feat_d = {}
text_feat_d = get_text_feat_dict(texts, vlm, text_feat_d)
text_feats = [text_feat_d[t] for t in texts]
text_feats_tensor = torch.cat(text_feats, 0)
print('Text', text_feats_tensor.mean(dim=-1))
probs, idxs = vlm.predict_label(vid_feat, text_feats_tensor, top=topk)
ret_texts = [texts[i] for i in idxs.long().numpy()[0].tolist()]
return ret_texts, probs.float().numpy()[0]
def setup_internvideo2(config: dict):
if "bert" in config.model.text_encoder.name:
tokenizer = BertTokenizer.from_pretrained(config.model.text_encoder.pretrained, local_files_only=True)
model = InternVideo2_Stage2(config=config, tokenizer=tokenizer, is_pretrain=True)
else:
model = InternVideo2_Stage2(config=config, is_pretrain=True)
tokenizer = model.tokenizer
if config.get('compile_model', False):
torch.set_float32_matmul_precision('high')
model = torch.compile(model)
model = model.to(torch.device(config.device))
model_without_ddp = model
if (config.pretrained_path.strip() and (os.path.isfile(config.pretrained_path)) or "s3://" in config.pretrained_path):
checkpoint = torch.load(config.pretrained_path, map_location="cpu")
try:
if "model" in checkpoint.keys():
state_dict = checkpoint["model"]
else:
state_dict = checkpoint["module"] # This is a deepspeed stage 1 model
except:
state_dict = checkpoint
# Note: this was a temporary fix due to the bug caused by is_pretrain=False
# from collections import OrderedDict
# state_dict = OrderedDict({ k.replace('text_encoder.bert', 'text_encoder') : state_dict[k] for k in state_dict})
if config.get('origin_num_frames', None) is not None:
a = len(state_dict)
interpolate_pos_embed_internvideo2_new(state_dict, model_without_ddp.vision_encoder, orig_t_size=config.origin_num_frames)
assert a == len(state_dict), state_dict.keys()
msg = model_without_ddp.load_state_dict(state_dict, strict=False)
print(f"load_state_dict: {msg}")
if config.get('use_bf16', False):
model_without_ddp = model_without_ddp.to(torch.bfloat16)
elif config.get('use_half_precision', False):
model_without_ddp = model_without_ddp.to(torch.float16)
else:
model_without_ddp = model_without_ddp.to(torch.float32)
return (model_without_ddp, tokenizer,)
class InternVideo2_Stage2(nn.Module):
"""docstring for InternVideo2_Stage2"""
def __init__(self,
config,
tokenizer,
is_pretrain: bool=True):
super(InternVideo2_Stage2, self).__init__()
self.config = config
self.tokenizer = tokenizer
self.is_pretrain = is_pretrain
self.vision_width = config.model.vision_encoder.clip_embed_dim
self.text_width = config.model.text_encoder.d_model
self.embed_dim = config.model.embed_dim
# create modules.
self.vision_encoder = self.build_vision_encoder()
self.freeze_vision()
self.text_encoder = self.build_text_encoder()
self.freeze_text()
self.vision_proj = nn.Linear(self.vision_width, self.embed_dim)
self.text_proj = nn.Linear(self.text_width, self.embed_dim)
def freeze_vision(self):
"""freeze vision encoder"""
for p in self.vision_encoder.parameters():
p.requires_grad = False
def freeze_text(self):
"""freeze text encoder"""
for p in self.text_encoder.parameters():
p.requires_grad = False
@property
def dtype(self):
return self.vision_encoder.patch_embed.proj.weight.dtype
def encode_vision(self,
image: torch.Tensor,
test: bool=False):
"""encode image / videos as features.
Args:
image (torch.Tensor): The input images.
test (bool): Whether testing.
Returns: tuple.
- vision_embeds (torch.Tensor): The output features. Shape: [B,N,C].
- pooled_vision_embeds (torch.Tensor): The pooled output features. Shape: [B,1,C].
- student_output (torch.Tensor): The features of alignment. Shape: [K,B,N,C].
- clip_output (torch.Tensor): The features of clip. Shape: [K,B,N,C].
"""
T = image.shape[1]
use_image = True if T == 1 else False
image = image.permute(0, 2, 1, 3, 4).to(self.dtype) # [B,T,C,H,W] -> [B,C,T,H,W]
# whether save temporal dimension
# keep_temporal=self.config.model.vision_encoder.keep_temporal
if test:
vision_embeds, pooled_vision_embeds, _, _ = self.vision_encoder(
image, None, use_image)
return vision_embeds, pooled_vision_embeds
else:
mask, targets_clip_middle_vis, targets_clip_final_vis = self.encode_teacher(image)
# if mask is not None and (self.video_mask_type != 'tube' or self.image_mask_type != 'tube'):
# keep_temporal = False
# print(f"\033[31mmask is {type(mask)}\033[0m")
vision_embeds, pooled_vision_embeds, student_output, student_output_final = self.vision_encoder(
image, mask, use_image)
return vision_embeds, pooled_vision_embeds, student_output, student_output_final, targets_clip_middle_vis, targets_clip_final_vis
def encode_text(self,
text: dict):
"""encode text.
Args:
text (dict): The output of huggingface's `PreTrainedTokenizer`. contains keys:
- input_ids (torch.Tensor): Token ids to be fed to a model. Shape: [B,L].
- attention_mask (torch.Tensor): The mask indicate padded tokens. Shape: [B,L]. 0 is padded token.
- other keys refer to "https://huggingface.co/docs/transformers/v4.21.2/en/main_classes/tokenizer#transformers.PreTrainedTokenizer.__call__".
Returns: tuple.
- text_embeds (torch.Tensor): The features of all tokens. Shape: [B,L,C].
- pooled_text_embeds (torch.Tensor): The pooled features. Shape: [B,C].
"""
text_output = self.get_text_encoder()(
text.input_ids,
attention_mask=text.attention_mask,
return_dict=True,
mode="text",
)
text_embeds = text_output.last_hidden_state
pooled_text_embeds = text_embeds[:, 0]
return text_embeds, pooled_text_embeds
def build_vision_encoder(self):
"""build vision encoder
Returns: (vision_encoder, clip_teacher). Each is a `nn.Module`.
"""
encoder_name = self.config.model.vision_encoder.name
if encoder_name == 'pretrain_internvideo2_1b_patch14_224':
vision_encoder = pretrain_internvideo2_1b_patch14_224(self.config.model)
else:
raise ValueError(f"Not implemented: {encoder_name}")
# parameters for mask
img_size = self.config.model.vision_encoder.img_size
num_frames = self.config.model.vision_encoder.num_frames
tublet_size = self.config.model.vision_encoder.tubelet_size
patch_size = self.config.model.vision_encoder.patch_size
self.clip_img_size = self.config.model.vision_encoder.clip_input_resolution
self.video_mask_type = self.config.model.vision_encoder.video_mask_type
self.video_window_size = (num_frames // tublet_size, img_size // patch_size, img_size // patch_size)
self.video_mask_ratio = self.config.model.vision_encoder.video_mask_ratio
self.image_mask_type = self.config.model.vision_encoder.image_mask_type
self.image_window_size = (1, img_size // patch_size, img_size // patch_size)
self.image_mask_ratio = self.config.model.vision_encoder.image_mask_ratio
return vision_encoder
def build_text_encoder(self):
"""build text_encoder and possiblly video-to-text multimodal fusion encoder.
Returns: nn.Module. The text encoder
"""
encoder_name = self.config.model.text_encoder.name
if "bert" in encoder_name:
text_encoder = build_bert(
self.config.model,
self.is_pretrain,
self.config.gradient_checkpointing,
)
else:
raise ValueError(f"Not implemented: {encoder_name}")
return text_encoder
def get_text_encoder(self):
"""get text encoder, used for text and cross-modal encoding"""
encoder = self.text_encoder
return encoder.bert if hasattr(encoder, "bert") else encoder
def get_vid_features(self,
frames: torch.Tensor):
"""get the video features for the given frames.
Args:
frames (torch.Tensor): The input frames. Shape: [B,T,C,H,W].
Returns: tuple.
- vision_embeds (torch.Tensor): The output features. Shape: [B,N,C].
- pooled_vision_embeds (torch.Tensor): The pooled output features. Shape: [B,1,C].
"""
with torch.no_grad():
_, vfeat = self.encode_vision(frames, test=True)
vfeat = self.vision_proj(vfeat)
vfeat /= vfeat.norm(dim=-1, keepdim=True)
return vfeat
def get_txt_feat(self,
text: str):
"""get the text features for the given text."""
device = next(self.parameters()).device
with torch.no_grad():
text = self.tokenizer(
text,
padding="max_length",
truncation=True,
max_length=self.config.max_txt_l,
return_tensors="pt",).to(device)
_, tfeat = self.encode_text(text)
tfeat = self.text_proj(tfeat)
tfeat /= tfeat.norm(dim=-1, keepdim=True)
return tfeat
def predict_label(self,
vid_feat: torch.Tensor,
txt_feat: torch.Tensor,
top: int=5):
label_probs = (100.0 * vid_feat @ txt_feat.T).softmax(dim=-1)
top_probs, top_labels = label_probs.float().cpu().topk(top, dim=-1)
return top_probs, top_labels
|