File size: 12,454 Bytes
2d9a728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import numpy as np
import cv2
import os
import io

import torch
from torch import nn

import sys
from models.backbones.internvideo2 import pretrain_internvideo2_1b_patch14_224
from models.backbones.bert.builder import build_bert
# from models.criterions import get_sim
from models.backbones.internvideo2.pos_embed import interpolate_pos_embed_internvideo2_new
from models.backbones.bert.tokenization_bert import BertTokenizer


def _frame_from_video(video):
    while video.isOpened():
        success, frame = video.read()
        if success:
            yield frame
        else:
            break
        
v_mean = np.array([0.485, 0.456, 0.406]).reshape(1,1,3)
v_std = np.array([0.229, 0.224, 0.225]).reshape(1,1,3)
def normalize(data):
    return (data/255.0-v_mean)/v_std


def frames2tensor(vid_list, fnum=8, target_size=(224, 224), device=torch.device('cuda')):
    assert(len(vid_list) >= fnum)
    step = len(vid_list) // fnum
    vid_list = vid_list[::step][:fnum]
    vid_list = [cv2.resize(x[:,:,::-1], target_size) for x in vid_list]
    vid_tube = [np.expand_dims(normalize(x), axis=(0, 1)) for x in vid_list]
    vid_tube = np.concatenate(vid_tube, axis=1)
    vid_tube = np.transpose(vid_tube, (0, 1, 4, 2, 3))
    vid_tube = torch.from_numpy(vid_tube).to(device, non_blocking=True).float()
    return vid_tube


def get_text_feat_dict(texts, clip, text_feat_d={}):
    for t in texts:
        feat = clip.get_txt_feat(t)
        text_feat_d[t] = feat
    return text_feat_d


def get_vid_feat(frames, vlm):
    return vlm.get_vid_features(frames)


def retrieve_text(frames, 
                  texts, 
                  model,
                  topk:int=5,
                  config: dict={},
                  device=torch.device('cuda')):
    
    vlm = model
    vlm = vlm.to(device)
    
    fn = config.get('num_frames', 8)
    size_t = config.get('size_t', 224)
    frames_tensor = frames2tensor(frames, fnum=fn, target_size=(size_t, size_t), device=device)
    vid_feat = vlm.get_vid_features(frames_tensor)
    print('Video', vid_feat.mean(dim=-1))

    text_feat_d = {}
    text_feat_d = get_text_feat_dict(texts, vlm, text_feat_d)
    text_feats = [text_feat_d[t] for t in texts]
    text_feats_tensor = torch.cat(text_feats, 0)
    print('Text', text_feats_tensor.mean(dim=-1))
    
    probs, idxs = vlm.predict_label(vid_feat, text_feats_tensor, top=topk)

    ret_texts = [texts[i] for i in idxs.long().numpy()[0].tolist()]
    return ret_texts, probs.float().numpy()[0]


def setup_internvideo2(config: dict):
    if "bert" in config.model.text_encoder.name:
        tokenizer = BertTokenizer.from_pretrained(config.model.text_encoder.pretrained, local_files_only=True)
        model = InternVideo2_Stage2(config=config, tokenizer=tokenizer, is_pretrain=True)
    else:
        model = InternVideo2_Stage2(config=config, is_pretrain=True)
        tokenizer = model.tokenizer

    if config.get('compile_model', False):
        torch.set_float32_matmul_precision('high')
        model = torch.compile(model)

    model = model.to(torch.device(config.device))
    model_without_ddp = model

    if (config.pretrained_path.strip() and (os.path.isfile(config.pretrained_path)) or "s3://" in config.pretrained_path):
        checkpoint = torch.load(config.pretrained_path, map_location="cpu")
        try:
            if "model" in checkpoint.keys():
                state_dict = checkpoint["model"]
            else:
                state_dict = checkpoint["module"] # This is a deepspeed stage 1 model
        except:  
            state_dict = checkpoint

        # Note: this was a temporary fix due to the bug caused by is_pretrain=False
        # from collections import OrderedDict
        # state_dict = OrderedDict({ k.replace('text_encoder.bert', 'text_encoder') : state_dict[k] for k in state_dict})
        
        if config.get('origin_num_frames', None) is not None:
            a = len(state_dict)
            interpolate_pos_embed_internvideo2_new(state_dict, model_without_ddp.vision_encoder, orig_t_size=config.origin_num_frames)
            assert a == len(state_dict), state_dict.keys()

        msg = model_without_ddp.load_state_dict(state_dict, strict=False)
        print(f"load_state_dict: {msg}")
    
    if config.get('use_bf16', False):
        model_without_ddp = model_without_ddp.to(torch.bfloat16)
    elif config.get('use_half_precision', False):
        model_without_ddp = model_without_ddp.to(torch.float16)
    else:
        model_without_ddp = model_without_ddp.to(torch.float32)
        
    return (model_without_ddp, tokenizer,)


class InternVideo2_Stage2(nn.Module):
    """docstring for InternVideo2_Stage2"""

    def __init__(self, 
                 config, 
                 tokenizer, 
                 is_pretrain: bool=True):
        super(InternVideo2_Stage2, self).__init__()

        self.config = config
        self.tokenizer = tokenizer

        self.is_pretrain = is_pretrain
        self.vision_width = config.model.vision_encoder.clip_embed_dim
        self.text_width = config.model.text_encoder.d_model
        self.embed_dim = config.model.embed_dim

        # create modules.
        self.vision_encoder = self.build_vision_encoder()
        self.freeze_vision()

        self.text_encoder = self.build_text_encoder()
        self.freeze_text()

        self.vision_proj = nn.Linear(self.vision_width, self.embed_dim)
        self.text_proj = nn.Linear(self.text_width, self.embed_dim)

    def freeze_vision(self):
        """freeze vision encoder"""
        for p in self.vision_encoder.parameters():
            p.requires_grad = False

    def freeze_text(self):
        """freeze text encoder"""
        for p in self.text_encoder.parameters():
            p.requires_grad = False

    @property
    def dtype(self):
        return self.vision_encoder.patch_embed.proj.weight.dtype

    def encode_vision(self, 
                      image: torch.Tensor, 
                      test: bool=False):
        """encode image / videos as features.

        Args:
            image (torch.Tensor): The input images.
            test (bool): Whether testing.

        Returns: tuple.
            - vision_embeds (torch.Tensor): The output features. Shape: [B,N,C].
            - pooled_vision_embeds (torch.Tensor): The pooled output features. Shape: [B,1,C].
            - student_output (torch.Tensor): The features of alignment. Shape: [K,B,N,C].
            - clip_output (torch.Tensor): The features of clip. Shape: [K,B,N,C].

        """
        
        T = image.shape[1]
        use_image = True if T == 1 else False
        image = image.permute(0, 2, 1, 3, 4).to(self.dtype) # [B,T,C,H,W] -> [B,C,T,H,W]
        # whether save temporal dimension
        # keep_temporal=self.config.model.vision_encoder.keep_temporal
        if test:
            vision_embeds, pooled_vision_embeds, _, _ = self.vision_encoder(
                image, None, use_image)
            return vision_embeds, pooled_vision_embeds
        else:
            mask, targets_clip_middle_vis, targets_clip_final_vis = self.encode_teacher(image) 
            # if mask is not None and (self.video_mask_type != 'tube' or self.image_mask_type != 'tube'):
            #     keep_temporal = False
            # print(f"\033[31mmask is {type(mask)}\033[0m")
            vision_embeds, pooled_vision_embeds, student_output, student_output_final = self.vision_encoder(
                    image, mask, use_image)
            return vision_embeds, pooled_vision_embeds, student_output, student_output_final, targets_clip_middle_vis, targets_clip_final_vis

    def encode_text(self, 
                    text: dict):
        """encode text.
        Args:
            text (dict): The output of huggingface's `PreTrainedTokenizer`. contains keys:
                - input_ids (torch.Tensor): Token ids to be fed to a model. Shape: [B,L].
                - attention_mask (torch.Tensor): The mask indicate padded tokens. Shape: [B,L]. 0 is padded token.
                - other keys refer to "https://huggingface.co/docs/transformers/v4.21.2/en/main_classes/tokenizer#transformers.PreTrainedTokenizer.__call__".
        Returns: tuple.
            - text_embeds (torch.Tensor): The features of all tokens. Shape: [B,L,C].
            - pooled_text_embeds (torch.Tensor): The pooled features. Shape: [B,C].

        """
        text_output = self.get_text_encoder()(
            text.input_ids,
            attention_mask=text.attention_mask,
            return_dict=True,
            mode="text",
        )
        text_embeds = text_output.last_hidden_state
        pooled_text_embeds = text_embeds[:, 0]
        return text_embeds, pooled_text_embeds

    def build_vision_encoder(self):
        """build vision encoder
        Returns: (vision_encoder, clip_teacher). Each is a `nn.Module`.

        """
        encoder_name = self.config.model.vision_encoder.name
        
        if encoder_name == 'pretrain_internvideo2_1b_patch14_224':
            vision_encoder = pretrain_internvideo2_1b_patch14_224(self.config.model)
        else:
            raise ValueError(f"Not implemented: {encoder_name}")

        # parameters for mask
        img_size = self.config.model.vision_encoder.img_size
        num_frames = self.config.model.vision_encoder.num_frames
        tublet_size = self.config.model.vision_encoder.tubelet_size
        patch_size = self.config.model.vision_encoder.patch_size
        self.clip_img_size = self.config.model.vision_encoder.clip_input_resolution
        self.video_mask_type = self.config.model.vision_encoder.video_mask_type
        self.video_window_size = (num_frames // tublet_size, img_size // patch_size, img_size // patch_size)
        self.video_mask_ratio = self.config.model.vision_encoder.video_mask_ratio
        self.image_mask_type = self.config.model.vision_encoder.image_mask_type
        self.image_window_size = (1, img_size // patch_size, img_size // patch_size)
        self.image_mask_ratio = self.config.model.vision_encoder.image_mask_ratio
        
        return vision_encoder

    def build_text_encoder(self):
        """build text_encoder and possiblly video-to-text multimodal fusion encoder.
        Returns: nn.Module. The text encoder

        """
        encoder_name = self.config.model.text_encoder.name

        if "bert" in encoder_name:
            text_encoder = build_bert(
                self.config.model,
                self.is_pretrain,
                self.config.gradient_checkpointing,
            )
        else:
            raise ValueError(f"Not implemented: {encoder_name}")

        return text_encoder

    def get_text_encoder(self):
        """get text encoder, used for text and cross-modal encoding"""
        encoder = self.text_encoder
        return encoder.bert if hasattr(encoder, "bert") else encoder
    
    def get_vid_features(self, 
                     frames: torch.Tensor):
        """get the video features for the given frames.

        Args:
            frames (torch.Tensor): The input frames. Shape: [B,T,C,H,W].

        Returns: tuple.
            - vision_embeds (torch.Tensor): The output features. Shape: [B,N,C].
            - pooled_vision_embeds (torch.Tensor): The pooled output features. Shape: [B,1,C].

        """
        with torch.no_grad():  
            _, vfeat = self.encode_vision(frames, test=True)
            vfeat = self.vision_proj(vfeat)
            vfeat /= vfeat.norm(dim=-1, keepdim=True)
        return vfeat
    
    def get_txt_feat(self, 
                     text: str):
        """get the text features for the given text."""
        device = next(self.parameters()).device
        with torch.no_grad():
            text = self.tokenizer(
                text, 
                padding="max_length", 
                truncation=True, 
                max_length=self.config.max_txt_l, 
                return_tensors="pt",).to(device)
            _, tfeat = self.encode_text(text)
            tfeat = self.text_proj(tfeat)
            tfeat /= tfeat.norm(dim=-1, keepdim=True)
        return tfeat
    
    def predict_label(self, 
                      vid_feat: torch.Tensor, 
                      txt_feat: torch.Tensor, 
                      top: int=5):
        label_probs = (100.0 * vid_feat @ txt_feat.T).softmax(dim=-1)
        top_probs, top_labels = label_probs.float().cpu().topk(top, dim=-1)
        return top_probs, top_labels