Spaces:
Running
on
Zero
Running
on
Zero
File size: 39,872 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 |
import argparse
import datetime
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
import json
import os
from functools import partial
from pathlib import Path
from collections import OrderedDict
from datasets.mixup import Mixup
from timm.models import create_model
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.utils import ModelEma
from optim_factory import create_optimizer, get_parameter_groups, LayerDecayValueAssigner
from datasets import build_dataset
from single_modality.engines.engine_for_finetuning import train_one_epoch, validation_one_epoch, final_test, merge
from utils import NativeScalerWithGradNormCount as NativeScaler
from utils import multiple_samples_collate
import utils
from models import *
def get_args():
parser = argparse.ArgumentParser('VideoMAE fine-tuning and evaluation script for video classification', add_help=False)
parser.add_argument('--batch_size', default=64, type=int)
parser.add_argument('--test_batch_size', default=64, type=int)
parser.add_argument('--epochs', default=30, type=int)
parser.add_argument('--update_freq', default=1, type=int)
parser.add_argument('--save_ckpt_freq', default=100, type=int)
parser.add_argument('--steps_per_print', default=1, type=int)
parser.add_argument('--use_ceph_checkpoint', action='store_true',
help="whether use ceph to save and load checkpoint, may be some bug now")
parser.set_defaults(use_ceph_checkpoint=False)
parser.add_argument('--ceph_checkpoint_prefix', default='', type=str,
help='prefix for checkpoint in ceph')
parser.add_argument('--ckpt_path_split', default='/exp/', type=str,
help='string for splitting the ckpt_path')
# Model parameters
parser.add_argument('--model', default='vit_base_patch16_224', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--tubelet_size', type=int, default=2)
parser.add_argument('--input_size', default=224, type=int,
help='videos input size')
parser.add_argument('--layer_scale_init_value', default=1e-5, type=float,
help="0.1 for base, 1e-5 for large. set 0 to disable LayerScale")
parser.add_argument('--layerscale_no_force_fp32', action='store_true',
help="Not force fp32 for LayerScale")
parser.set_defaults(layerscale_no_force_fp32=False)
parser.add_argument('--sep_pos_embed', action='store_true',
help="whether use seperable position embedding")
parser.add_argument('--center_init', action='store_true',
help="center initlization for patch embedding")
parser.add_argument('--orig_t_size', type=int, default=8)
parser.add_argument('--fc_drop_rate', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--attn_drop_rate', type=float, default=0.0, metavar='PCT',
help='Attention dropout rate (default: 0.)')
parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
parser.add_argument('--head_drop_path', type=float, default=0.0, metavar='PCT',
help='Head Drop path rate (default: 0.0)')
parser.add_argument('--disable_eval_during_finetuning', action='store_true', default=False)
parser.add_argument('--model_ema', action='store_true', default=False)
parser.add_argument('--model_ema_decay', type=float, default=0.9999, help='')
parser.add_argument('--model_ema_force_cpu', action='store_true', default=False, help='')
parser.add_argument('--merge_method', type=str, default='proj', help='merge mthod for features')
parser.add_argument('--merge_norm', type=str, default='kaiming_BN', help='merge Norm for features')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the
weight decay. We use a cosine schedule for WD and using a larger decay by
the end of training improves performance for ViTs.""")
parser.add_argument('--lr', type=float, default=1e-3, metavar='LR',
help='learning rate (default: 1e-3)')
parser.add_argument('--layer_decay', type=float, default=0.75)
parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-6)')
parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N',
help='num of steps to warmup LR, will overload warmup_epochs if set > 0')
parser.add_argument('--open_clip_projector', action='store_true',
help="whether open clip projector for training")
parser.set_defaults(open_clip_projector=False)
parser.add_argument('--open_block_num', type=int, default=0,
help="whether open the last few blocks")
# Augmentation parameters
parser.add_argument('--color_jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--num_sample', type=int, default=2,
help='Repeated_aug (default: 2)')
parser.add_argument('--aa', type=str, default='rand-m7-n4-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + "(default: rand-m7-n4-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1,
help='Label smoothing (default: 0.1)')
parser.add_argument('--train_interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
# Evaluation parameters
parser.add_argument('--crop_pct', type=float, default=None)
parser.add_argument('--short_side_size', type=int, default=224)
parser.add_argument('--test_num_segment', type=int, default=5)
parser.add_argument('--test_num_crop', type=int, default=3)
# Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# Mixup params
parser.add_argument('--mixup', type=float, default=0.8,
help='mixup alpha, mixup enabled if > 0.')
parser.add_argument('--cutmix', type=float, default=1.0,
help='cutmix alpha, cutmix enabled if > 0.')
parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup_prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup_switch_prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup_mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# Finetuning params
parser.add_argument('--finetune', default='', help='finetune from checkpoint')
parser.add_argument('--finetune_extra', default='', help='finetune from extra checkpoint')
parser.add_argument('--delete_head', action='store_true', help='whether delete head')
parser.add_argument('--model_key', default='model|module', type=str)
parser.add_argument('--model_prefix', default='', type=str)
parser.add_argument('--init_scale', default=0.001, type=float)
parser.add_argument('--use_checkpoint', action='store_true')
parser.set_defaults(use_checkpoint=False)
parser.add_argument('--checkpoint_num', default=0, type=int,
help='number of layers for using checkpoint')
parser.add_argument('--use_mean_pooling', action='store_true')
parser.set_defaults(use_mean_pooling=True)
parser.add_argument('--use_cls', action='store_false', dest='use_mean_pooling')
# Dataset parameters
parser.add_argument('--prefix', default='', type=str, help='prefix for data')
parser.add_argument('--split', default=' ', type=str, help='split for metadata')
parser.add_argument('--filename_tmpl', default='img_{:05}.jpg', type=str, help='file template')
parser.add_argument('--data_path', default='you_data_path', type=str,
help='dataset path')
parser.add_argument('--eval_data_path', default=None, type=str,
help='dataset path for evaluation')
parser.add_argument('--nb_classes', default=400, type=int,
help='number of the classification types')
parser.add_argument('--imagenet_default_mean_and_std', default=True, action='store_true')
parser.add_argument('--use_decord', action='store_true',
help='whether use decord to load video, otherwise load image')
parser.add_argument('--no_use_decord', action='store_false', dest='use_decord')
parser.set_defaults(use_decord=True)
parser.add_argument('--num_segments', type=int, default=1)
parser.add_argument('--num_frames', type=int, default=16)
parser.add_argument('--sampling_rate', type=int, default=4)
parser.add_argument('--data_set', default='Kinetics', choices=[
'Kinetics', 'Kinetics_sparse',
'SSV2', 'UCF101', 'HMDB51', 'image_folder',
'mitv1_sparse',
'ANet', 'HACS', 'ANet_interval', 'HACS_interval',
], type=str, help='dataset')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default=None,
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--auto_resume', action='store_true')
parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume')
parser.set_defaults(auto_resume=True)
parser.add_argument('--save_ckpt', action='store_true')
parser.add_argument('--no_save_ckpt', action='store_false', dest='save_ckpt')
parser.set_defaults(save_ckpt=True)
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--test_best', action='store_true',
help='Whether test the best model')
parser.add_argument('--eval', action='store_true',
help='Perform evaluation only')
parser.add_argument('--dist_eval', action='store_true', default=False,
help='Enabling distributed evaluation')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
parser.add_argument('--enable_deepspeed', action='store_true', default=False)
parser.add_argument('--bf16', default=False, action='store_true')
parser.add_argument('--zero_stage', default=0, type=int,
help='ZeRO optimizer stage (default: 0)')
known_args, _ = parser.parse_known_args()
if known_args.enable_deepspeed:
try:
import deepspeed
from deepspeed import DeepSpeedConfig
parser = deepspeed.add_config_arguments(parser)
ds_init = deepspeed.initialize
except:
print("Please 'pip install deepspeed'")
exit(0)
else:
ds_init = None
return parser.parse_args(), ds_init
def main(args, ds_init):
utils.init_distributed_mode(args)
if ds_init is not None:
utils.create_internvideo2_ds_config(args)
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
# random.seed(seed)
cudnn.benchmark = True
dataset_train, args.nb_classes = build_dataset(is_train=True, test_mode=False, args=args)
if args.disable_eval_during_finetuning:
dataset_val = None
else:
dataset_val, _ = build_dataset(is_train=False, test_mode=False, args=args)
dataset_test, _ = build_dataset(is_train=False, test_mode=True, args=args)
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
print("Sampler_train = %s" % str(sampler_train))
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False)
sampler_test = torch.utils.data.DistributedSampler(
dataset_test, num_replicas=num_tasks, rank=global_rank, shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
if global_rank == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = utils.TensorboardLogger(log_dir=args.log_dir)
else:
log_writer = None
if args.num_sample > 1:
collate_func = partial(multiple_samples_collate, fold=False)
else:
collate_func = None
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
collate_fn=collate_func,
persistent_workers=True
)
if dataset_val is not None:
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=args.test_batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
persistent_workers=True
)
else:
data_loader_val = None
if dataset_test is not None:
data_loader_test = torch.utils.data.DataLoader(
dataset_test, sampler=sampler_test,
batch_size=args.test_batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
persistent_workers=True
)
else:
data_loader_test = None
mixup_fn = None
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
if mixup_active:
print("Mixup is activated!")
mixup_fn = Mixup(
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
label_smoothing=args.smoothing, num_classes=args.nb_classes)
if 'cat' in args.model:
model = create_model(
args.model,
pretrained=False,
num_classes=args.nb_classes,
num_frames=args.num_frames * args.num_segments,
tubelet_size=args.tubelet_size,
sep_pos_embed=args.sep_pos_embed,
fc_drop_rate=args.fc_drop_rate,
drop_path_rate=args.drop_path,
head_drop_path_rate=args.head_drop_path,
use_checkpoint=args.use_checkpoint,
checkpoint_num=args.checkpoint_num,
init_scale=args.init_scale,
init_values=args.layer_scale_init_value,
layerscale_no_force_fp32=args.layerscale_no_force_fp32,
merge_method=args.merge_method,
merge_norm=args.merge_norm,
)
else:
model = create_model(
args.model,
pretrained=False,
num_classes=args.nb_classes,
num_frames=args.num_frames * args.num_segments,
tubelet_size=args.tubelet_size,
sep_pos_embed=args.sep_pos_embed,
fc_drop_rate=args.fc_drop_rate,
drop_path_rate=args.drop_path,
head_drop_path_rate=args.head_drop_path,
use_checkpoint=args.use_checkpoint,
checkpoint_num=args.checkpoint_num,
init_scale=args.init_scale,
init_values=args.layer_scale_init_value,
layerscale_no_force_fp32=args.layerscale_no_force_fp32,
)
patch_size = model.patch_embed.patch_size
print("Patch size = %s" % str(patch_size))
args.window_size = (args.num_frames // args.tubelet_size, args.input_size // patch_size[0], args.input_size // patch_size[1])
args.patch_size = patch_size
if args.finetune:
if args.finetune.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.finetune, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.finetune, map_location='cpu')
print("Load ckpt from %s" % args.finetune)
checkpoint_model = None
for model_key in args.model_key.split('|'):
if model_key in checkpoint:
checkpoint_model = checkpoint[model_key]
print("Load state_dict by model_key = %s" % model_key)
break
if checkpoint_model is None:
checkpoint_model = checkpoint
if 'head.weight' in checkpoint_model.keys():
if args.delete_head:
print("Removing head from pretrained checkpoint")
del checkpoint_model['head.weight']
del checkpoint_model['head.bias']
elif checkpoint_model['head.weight'].shape[0] == 710:
if args.nb_classes == 400:
checkpoint_model['head.weight'] = checkpoint_model['head.weight'][:args.nb_classes]
checkpoint_model['head.bias'] = checkpoint_model['head.bias'][:args.nb_classes]
elif args.nb_classes in [600, 700]:
# download from https://drive.google.com/drive/folders/17cJd2qopv-pEG8NSghPFjZo1UUZ6NLVm
map_path = f'./k710/label_mixto{args.nb_classes}.json'
print(f'Load label map from {map_path}')
with open(map_path) as f:
label_map = json.load(f)
checkpoint_model['head.weight'] = checkpoint_model['head.weight'][label_map]
checkpoint_model['head.bias'] = checkpoint_model['head.bias'][label_map]
all_keys = list(checkpoint_model.keys())
new_dict = OrderedDict()
for key in all_keys:
if key.startswith('backbone.'):
new_dict[key[9:]] = checkpoint_model[key]
elif key.startswith('encoder.'):
new_dict[key[8:]] = checkpoint_model[key]
else:
new_dict[key] = checkpoint_model[key]
checkpoint_model = new_dict
if args.finetune_extra:
extra_checkpoint = torch.load(args.finetune_extra, map_location='cpu')
print("Load extra ckpt from %s" % args.finetune_extra)
extra_checkpoint_model = None
for model_key in args.model_key.split('|'):
if model_key in extra_checkpoint:
extra_checkpoint_model = extra_checkpoint[model_key]
print("Load state_dict by model_key = %s" % model_key)
break
for k, v in extra_checkpoint_model.items():
new_k = k
if k.startswith('vision_encoder.'):
new_k = k.replace('vision_encoder.', '')
else:
print(f"Ignore keys: {k}")
continue
checkpoint_model[new_k] = v
# interpolate position embedding
if 'pos_embed' in checkpoint_model:
pos_embed_checkpoint = checkpoint_model['pos_embed']
embedding_size = pos_embed_checkpoint.shape[-1] # channel dim
num_patches = model.patch_embed.num_patches #
num_extra_tokens = model.pos_embed.shape[-2] - num_patches # 0/1
# we use 8 frames for pretraining
orig_t_size = args.orig_t_size
new_t_size = args.num_frames * args.num_segments // model.patch_embed.tubelet_size
# height (== width) for the checkpoint position embedding
orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5)
# height (== width) for the new position embedding
new_size = int((num_patches // (new_t_size))** 0.5)
# class_token and dist_token are kept unchanged
if orig_t_size != new_t_size:
print(f"Temporal interpolate from {orig_t_size} to {new_t_size}")
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
# B, L, C -> B, T, HW, C -> BHW, C, T (B = 1)
pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size)
pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear')
pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size)
pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
checkpoint_model['pos_embed'] = new_pos_embed
pos_embed_checkpoint = new_pos_embed
# class_token and dist_token are kept unchanged
if orig_size != new_size:
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
# B, L, C -> BT, H, W, C -> BT, C, H, W
pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size)
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
# BT, C, H, W -> BT, H, W, C -> B, T, H, W, C
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size)
pos_tokens = pos_tokens.flatten(1, 3) # B, L, C
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
checkpoint_model['pos_embed'] = new_pos_embed
elif 'pos_embed_spatial' in checkpoint_model and 'pos_embed_temporal' in checkpoint_model:
pos_embed_spatial_checkpoint = checkpoint_model['pos_embed_spatial']
pos_embed_temporal_checkpoint = checkpoint_model['pos_embed_temporal']
embedding_size = pos_embed_spatial_checkpoint.shape[-1] # channel dim
num_patches = model.patch_embed.num_patches #
orig_t_size = pos_embed_temporal_checkpoint.shape[-2]
new_t_size = args.num_frames // model.patch_embed.tubelet_size
# height (== width) for the checkpoint position embedding
orig_size = int(pos_embed_spatial_checkpoint.shape[-2] ** 0.5)
# height (== width) for the new position embedding
new_size = int((num_patches // new_t_size) ** 0.5)
if orig_t_size != new_t_size:
print(f"Temporal interpolate from {orig_t_size} to {new_t_size}")
tmp_pos_embed = pos_embed_temporal_checkpoint.view(1, orig_t_size, -1, embedding_size)
tmp_pos_embed = tmp_pos_embed.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size)
tmp_pos_embed = torch.nn.functional.interpolate(tmp_pos_embed, size=new_t_size, mode='linear')
tmp_pos_embed = tmp_pos_embed.view(1, -1, embedding_size, new_t_size)
tmp_pos_embed = tmp_pos_embed.permute(0, 3, 1, 2).reshape(1, -1, embedding_size)
checkpoint_model['pos_embed_temporal'] = tmp_pos_embed
if orig_size != new_size:
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
pos_tokens = pos_embed_spatial_checkpoint
# B, L, C -> BT, H, W, C -> BT, C, H, W
pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size)
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
# BT, C, H, W -> BT, H, W, C -> B, T, H, W, C
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size)
pos_tokens = pos_tokens.flatten(1, 3) # B, L, C
checkpoint_model['pos_embed_spatial'] = pos_tokens
utils.load_state_dict(model, checkpoint_model, prefix=args.model_prefix)
model.to(device)
print("Freeze backbone for linear probing")
if '6B' in args.model:
depth = 48
else:
depth = 40 # ViT-g
block_num_list = [(depth - i - 1) for i in range(args.open_block_num)]
for name, p in model.named_parameters():
if name.startswith('patch_embed') or name.startswith('pos_embed') or name.startswith('cls_token'):
print(f"Freeze {name}")
p.requires_grad = False
elif name.startswith('blocks'):
flag = True
for num in block_num_list:
if name.startswith(f'blocks.{num}'):
flag = False
break
if flag:
print(f"Freeze {name}")
p.requires_grad = False
else:
print(f"Unfreeze {name}")
elif name.startswith('clip_projector') and not args.open_clip_projector:
print(f"Freeze {name}")
p.requires_grad = False
else:
print(f"Unfreeze {name}")
model_ema = None
if args.model_ema:
model_ema = ModelEma(
model,
decay=args.model_ema_decay,
device='cpu' if args.model_ema_force_cpu else '',
resume='')
print("Using EMA with decay = %.8f" % args.model_ema_decay)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Model = %s" % str(model_without_ddp))
print('number of params:', n_parameters)
total_batch_size = args.batch_size * args.update_freq * utils.get_world_size()
num_training_steps_per_epoch = len(dataset_train) // total_batch_size
args.lr = args.lr * total_batch_size * args.num_sample / 256
args.min_lr = args.min_lr * total_batch_size * args.num_sample / 256
args.warmup_lr = args.warmup_lr * total_batch_size * args.num_sample / 256
print("LR = %.8f" % args.lr)
print("Batch size = %d" % total_batch_size)
print("Repeated sample = %d" % args.num_sample)
print("Update frequent = %d" % args.update_freq)
print("Number of training examples = %d" % len(dataset_train))
print("Number of training training per epoch = %d" % num_training_steps_per_epoch)
num_layers = model_without_ddp.get_num_layers()
if args.layer_decay < 1.0:
assigner = LayerDecayValueAssigner(list(args.layer_decay ** (num_layers + 1 - i) for i in range(num_layers + 2)))
else:
assigner = None
if assigner is not None:
print("Assigned values = %s" % str(assigner.values))
skip_weight_decay_list = model.no_weight_decay()
print("Skip weight decay list: ", skip_weight_decay_list)
if args.enable_deepspeed:
loss_scaler = None
optimizer_params = get_parameter_groups(
model, args.weight_decay, skip_weight_decay_list,
assigner.get_layer_id if assigner is not None else None,
assigner.get_scale if assigner is not None else None)
model, optimizer, _, _ = ds_init(
args=args, model=model, model_parameters=optimizer_params, dist_init_required=not args.distributed,
)
print("model.gradient_accumulation_steps() = %d" % model.gradient_accumulation_steps())
assert model.gradient_accumulation_steps() == args.update_freq
else:
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
optimizer = create_optimizer(
args, model_without_ddp, skip_list=skip_weight_decay_list,
get_num_layer=assigner.get_layer_id if assigner is not None else None,
get_layer_scale=assigner.get_scale if assigner is not None else None)
loss_scaler = NativeScaler()
print("Use step level LR scheduler!")
lr_schedule_values = utils.cosine_scheduler(
args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch,
warmup_epochs=args.warmup_epochs, start_warmup_value=args.warmup_lr, warmup_steps=args.warmup_steps,
)
if args.weight_decay_end is None:
args.weight_decay_end = args.weight_decay
wd_schedule_values = utils.cosine_scheduler(
args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch)
print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values)))
if mixup_fn is not None:
# smoothing is handled with mixup label transform
criterion = SoftTargetCrossEntropy()
elif args.smoothing > 0.:
criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
else:
criterion = torch.nn.CrossEntropyLoss()
print("criterion = %s" % str(criterion))
ceph_args = {
'use_ceph_checkpoint': args.use_ceph_checkpoint,
'ceph_checkpoint_prefix': args.ceph_checkpoint_prefix,
'ckpt_path_split': args.ckpt_path_split,
'local_rank': args.gpu,
}
if ceph_args['use_ceph_checkpoint']:
print("Will automatically upload model on ceph")
assert ceph_args['ceph_checkpoint_prefix'] != '', "Should set prefix for ceph checkpoint!"
utils.auto_load_model(
args=args, model=model, model_without_ddp=model_without_ddp,
optimizer=optimizer, loss_scaler=loss_scaler, model_ema=model_ema,
ceph_args=ceph_args,
)
print(f"Use bf16 {args.bf16}")
if args.eval:
preds_file = os.path.join(args.output_dir, str(global_rank) + '.txt')
test_stats = final_test(data_loader_test, model, device, preds_file, ds=args.enable_deepspeed, bf16=args.bf16)
torch.distributed.barrier()
if global_rank == 0:
print("Start merging results...")
final_top1 ,final_top5 = merge(args.output_dir, num_tasks)
print(f"Accuracy of the network on the {len(dataset_test)} test videos: Top-1: {final_top1:.2f}%, Top-5: {final_top5:.2f}%")
log_stats = {'Final top-1': final_top1,
'Final Top-5': final_top5}
if args.output_dir and utils.is_main_process():
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
exit(0)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
max_accuracy = 0.0
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
if log_writer is not None:
log_writer.set_step(epoch * num_training_steps_per_epoch * args.update_freq)
train_stats = train_one_epoch(
model, criterion, data_loader_train, optimizer,
device, epoch, loss_scaler, args.clip_grad, model_ema, mixup_fn,
log_writer=log_writer, start_steps=epoch * num_training_steps_per_epoch,
lr_schedule_values=lr_schedule_values, wd_schedule_values=wd_schedule_values,
num_training_steps_per_epoch=num_training_steps_per_epoch, update_freq=args.update_freq,
bf16=args.bf16
)
if args.output_dir and args.save_ckpt:
# if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs:
# utils.save_model(
# args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
# loss_scaler=loss_scaler, epoch=epoch, model_ema=model_ema,
# ceph_args=ceph_args,
# )
utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, model_name='latest', model_ema=model_ema,
ceph_args=ceph_args,
)
if data_loader_val is not None:
test_stats = validation_one_epoch(data_loader_val, model, device, ds=args.enable_deepspeed, bf16=args.bf16)
timestep = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
print(f"[{timestep}] Accuracy of the network on the {len(dataset_val)} val videos: {test_stats['acc1']:.1f}%")
if max_accuracy < test_stats["acc1"]:
max_accuracy = test_stats["acc1"]
if args.output_dir and args.save_ckpt:
utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, model_name='best', model_ema=model_ema,
ceph_args=ceph_args,
)
print(f'Max accuracy: {max_accuracy:.2f}%')
if log_writer is not None:
log_writer.update(val_acc1=test_stats['acc1'], head="perf", step=epoch)
log_writer.update(val_acc5=test_stats['acc5'], head="perf", step=epoch)
log_writer.update(val_loss=test_stats['loss'], head="perf", step=epoch)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'val_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
else:
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
preds_file = os.path.join(args.output_dir, str(global_rank) + '.txt')
if args.test_best:
print("Auto testing the best model")
args.eval = True
utils.auto_load_model(
args=args, model=model, model_without_ddp=model_without_ddp,
optimizer=optimizer, loss_scaler=loss_scaler, model_ema=model_ema,
ceph_args=ceph_args,
)
test_stats = final_test(data_loader_test, model, device, preds_file, ds=args.enable_deepspeed, bf16=args.bf16)
torch.distributed.barrier()
if global_rank == 0:
print("Start merging results...")
final_top1 ,final_top5 = merge(args.output_dir, num_tasks)
print(f"Accuracy of the network on the {len(dataset_test)} test videos: Top-1: {final_top1:.2f}%, Top-5: {final_top5:.2f}%")
log_stats = {'Final top-1': final_top1,
'Final Top-5': final_top5}
if args.output_dir and utils.is_main_process():
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
opts, ds_init = get_args()
if opts.output_dir:
Path(opts.output_dir).mkdir(parents=True, exist_ok=True)
main(opts, ds_init)
|