Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,635 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
import argparse
import datetime
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
import json
import os
from functools import partial
from pathlib import Path
from timm.models import create_model
from optim_factory import (
create_optimizer,
get_parameter_groups,
)
from datasets import build_multi_pretraining_dataset
from single_modality.engines.engine_for_pretraining import train_one_epoch
from utils import NativeScalerWithGradNormCount as NativeScaler
from utils import multiple_pretrain_samples_collate
import utils
from models import *
def get_args():
parser = argparse.ArgumentParser('VideoMAE pre-training script', add_help=False)
parser.add_argument('--batch_size', default=64, type=int)
parser.add_argument('--epochs', default=800, type=int)
parser.add_argument('--update_freq', default=1, type=int)
parser.add_argument('--save_ckpt_freq', default=50, type=int)
parser.add_argument('--steps_per_print', default=1, type=int)
parser.add_argument('--use_ceph_checkpoint', action='store_true',
help="whether use ceph to save and load checkpoint, may be some bug now")
parser.set_defaults(use_ceph_checkpoint=False)
parser.add_argument('--ceph_checkpoint_prefix', default='', type=str,
help='prefix for checkpoint in ceph')
parser.add_argument('--ckpt_path_split', default='/exp/', type=str,
help='string for splitting the ckpt_path')
# Model parameters
parser.add_argument('--model', default='pretrain_videomae_base_patch16_224', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--decoder_depth', default=4, type=int,
help='depth of decoder')
parser.add_argument('--mask_type', default='tube', choices=['random', 'tube', 'attention'],
type=str, help='masked strategy of video tokens/patches')
parser.add_argument('--mask_ratio', default=0.75, type=float,
help='ratio of the visual tokens/patches need be masked')
parser.add_argument('--input_size', default=224, type=int,
help='videos input size for backbone')
parser.add_argument('--drop_path', type=float, default=0.0, metavar='PCT',
help='Drop path rate (default: 0.0)')
parser.add_argument('--normlize_target', default=True, type=bool,
help='normalized the target patch pixels')
parser.add_argument('--tubelet_size', default=1, type=int,
help='temporal tube size for the patch embedding')
parser.add_argument('--layer_scale_init_value', default=1e-5, type=float,
help="0.1 for base, 1e-5 for large. set 0 to disable LayerScale")
parser.add_argument('--layerscale_no_force_fp32', action='store_true',
help="Not force fp32 for LayerScale")
parser.set_defaults(layerscale_no_force_fp32=False)
parser.add_argument('--sep_pos_embed', action='store_true',
help="whether use seperable position embedding")
parser.set_defaults(sep_pos_embed=False)
# CLIP decpder parameters
parser.add_argument('--clip_teacher', default='internvl_clip_6b', type=str,
help='Name of CLIP teacher')
parser.add_argument('--clip_input_resolution', default=224, type=int,
help='input resolution of CLIP decoder')
parser.add_argument('--clip_teacher_embed_dim', default=3200, type=int,
help='output dimension of CLIP decoder in the intermediate layers')
parser.add_argument('--clip_teacher_final_dim', default=768, type=int,
help='output dimension of CLIP decoder in the final layer, 0 means w/o alignment')
parser.add_argument('--clip_loss_ratio', default=[1, 1], type=float, nargs='+', metavar='BETA',
help='Loss ratio for middle features and final features (default: [1, 0.5])')
parser.add_argument('--clip_norm_type', default='l2', type=str,
help='type of feature normalization')
parser.add_argument('--clip_return_attn', action='store_true',
help="whether return CLIP attention")
parser.set_defaults(clip_return_attn=False)
parser.add_argument('--clip_return_layer', default=1, type=int,
help='number of CLIP return layers')
parser.add_argument('--clip_teacher_return_interval', default=1, type=float,
help='interval of CLIP teacher return layers')
parser.add_argument('--clip_student_return_interval', default=1, type=float,
help='interval of CLIP student return layers')
# MAE decoder parameters
parser.add_argument('--mae_teacher', default='clip_b16', type=str,
help='Name of MAE teacher')
parser.add_argument('--mae_input_resolution', default=224, type=int,
help='input resolution of MAE decoder')
parser.add_argument('--mae_tubelet_size', default=2, type=int,
help='tubelet size of MAE decoder')
parser.add_argument('--mae_teacher_embed_dim', default=1408, type=int,
help='output dimension of MAE decoder')
parser.add_argument('--mae_norm_type', default='l2', type=str,
help='type of feature normalization')
parser.add_argument('--mae_loss_ratio', default=1., type=float,
help='ratio for MAE loss')
parser.add_argument('--mae_return_layer', default=1, type=int,
help='number of MAE return layers')
parser.add_argument('--mae_teacher_return_interval', default=1, type=float,
help='interval of MAE teacher return layers')
parser.add_argument('--mae_student_return_interval', default=1, type=float,
help='interval of MAE student return layers')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt_eps', default=1e-6, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-6)')
parser.add_argument('--opt_betas', default=[0.9, 0.98], type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: [0.9, 0.98])')
parser.add_argument('--clip_grad', type=float, default=3.0, metavar='NORM',
help='Clip gradient norm (default: 3.0)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the
weight decay. We use a cosine schedule for WD.
(Set the same value with args.weight_decay to keep weight decay no change)""")
parser.add_argument('--lr', type=float, default=1.5e-4, metavar='LR',
help='learning rate (default: 1.5e-4)')
parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min_lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--use_checkpoint', action='store_true')
parser.set_defaults(use_checkpoint=False)
parser.add_argument('--checkpoint_num', type=int, default=0)
# Augmentation parameters
parser.add_argument('--num_sample', type=int, default=1, help='Repeated_aug (default: 1)')
parser.add_argument('--color_jitter', type=float, default=0.0, metavar='PCT',
help='Color jitter factor (default: 0.0)')
parser.add_argument('--train_interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--flip', default=False, action='store_true',
help='whether flip the video in pretraining')
# Dataset parameters
parser.add_argument('--prefix', default='', type=str, help='prefix for data')
parser.add_argument('--split', default=' ', type=str, help='split for metadata')
parser.add_argument('--data_path', default='you_data_path', type=str,
help='dataset path')
parser.add_argument('--imagenet_default_mean_and_std', default=True, action='store_true')
parser.add_argument('--use_decord', action='store_true',
help='whether use decord to load video, otherwise load image')
parser.add_argument('--no_use_decord', action='store_false', dest='use_decord')
parser.set_defaults(use_decord=True)
parser.add_argument('--num_segments', type=int, default=1)
parser.add_argument('--num_frames', type=int, default=16)
parser.add_argument('--sampling_rate', type=int, default=4)
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default=None,
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--auto_resume', action='store_true')
parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume')
parser.set_defaults(auto_resume=True)
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--test_best', action='store_true',
help='Whether test the best model')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--enable_deepspeed',
action='store_true', default=False)
parser.add_argument('--bf16', default=False, action='store_true')
parser.add_argument('--zero_stage', default=0, type=int,
help='ZeRO optimizer stage (default: 0)')
known_args, _ = parser.parse_known_args()
if known_args.enable_deepspeed:
try:
import deepspeed
parser = deepspeed.add_config_arguments(parser)
ds_init = deepspeed.initialize
except:
print("Please install DeepSpeed")
exit(0)
else:
ds_init = None
return parser.parse_args(), ds_init
def get_model(args):
print(f"Creating model: {args.model}")
model = create_model(
args.model,
pretrained=False,
drop_path_rate=args.drop_path,
num_frames=args.num_frames//(args.mae_tubelet_size//args.tubelet_size),
tubelet_size=args.tubelet_size,
sep_pos_embed=args.sep_pos_embed,
use_checkpoint=args.use_checkpoint,
checkpoint_num=args.checkpoint_num,
init_values=args.layer_scale_init_value,
layerscale_no_force_fp32=args.layerscale_no_force_fp32,
clip_teacher_embed_dim=args.clip_teacher_embed_dim,
clip_teacher_final_dim=args.clip_teacher_final_dim,
clip_norm_type=args.clip_norm_type,
clip_return_layer=args.clip_return_layer,
clip_student_return_interval=args.clip_student_return_interval,
mae_teacher_embed_dim=args.mae_teacher_embed_dim,
mae_norm_type=args.mae_norm_type,
mae_return_layer=args.mae_return_layer,
mae_student_return_interval=args.mae_student_return_interval,
)
return model
def main(args, ds_init):
utils.init_distributed_mode(args)
if ds_init is not None:
utils.create_internvideo2_ds_config(args)
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
model = get_model(args)
patch_size = model.patch_embed.patch_size
print("Patch size = %s" % str(patch_size))
print("Tubelet size = %s" % str(args.tubelet_size))
args.window_size = (args.num_frames // args.tubelet_size, args.input_size // patch_size[0], args.input_size // patch_size[1])
args.patch_size = patch_size
# CLIP teacher model
print(f'CLIP Teacher model: {args.clip_teacher}')
clip_teacher_model = eval(args.clip_teacher)(
img_size=args.clip_input_resolution,
clip_norm_type=args.clip_norm_type,
return_attn=args.clip_return_attn,
clip_return_layer=args.clip_return_layer,
clip_return_interval=args.clip_teacher_return_interval
)
# MAE teacher model
print(f'MAE Teacher model: {args.mae_teacher}')
mae_teacher_model = eval(args.mae_teacher)(
img_size=args.mae_input_resolution,
tubelet_size=args.mae_tubelet_size,
mae_norm_type=args.mae_norm_type,
mae_return_layer=args.mae_return_layer,
mae_return_interval=args.mae_teacher_return_interval
)
# get dataset
dataset_train = build_multi_pretraining_dataset(args)
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
sampler_rank = global_rank
num_training_steps_per_epoch = len(dataset_train) // args.batch_size // num_tasks
sampler_train = torch.utils.data.DistributedSampler(dataset_train, num_replicas=num_tasks, rank=sampler_rank, shuffle=True)
print("Sampler_train = %s" % str(sampler_train))
if global_rank == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = utils.TensorboardLogger(log_dir=args.log_dir)
else:
log_writer = None
if args.num_sample > 1:
collate_func = partial(multiple_pretrain_samples_collate, fold=False)
else:
collate_func = None
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
collate_fn=collate_func,
worker_init_fn=utils.seed_worker,
persistent_workers=True
)
model.to(device)
clip_teacher_model.to(device)
mae_teacher_model.to(device)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Model = %s" % str(model_without_ddp))
print('number of params: {} M'.format(n_parameters / 1e6))
total_batch_size = args.batch_size * utils.get_world_size()
args.lr = args.lr * total_batch_size * args.num_sample / 256
args.min_lr = args.min_lr * total_batch_size * args.num_sample / 256
args.warmup_lr = args.warmup_lr * total_batch_size * args.num_sample / 256
print("LR = %.8f" % args.lr)
print("Batch size = %d" % total_batch_size)
print("Repeated sample = %d" % args.num_sample)
print("Number of training steps = %d" % num_training_steps_per_epoch)
print("Number of training examples per epoch = %d" % (total_batch_size * num_training_steps_per_epoch))
skip_weight_decay_list = model.no_weight_decay()
print("Skip weight decay list: ", skip_weight_decay_list)
if args.enable_deepspeed:
loss_scaler = None
optimizer_params = get_parameter_groups(
model, args.weight_decay, skip_weight_decay_list
)
model, optimizer, _, _ = ds_init(
args=args, model=model, model_parameters=optimizer_params,
dist_init_required=not args.distributed,
)
print("model.gradient_accumulation_steps() = %d" %
model.gradient_accumulation_steps())
assert model.gradient_accumulation_steps() == args.update_freq
else:
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=False)
model_without_ddp = model.module
optimizer = create_optimizer(args, model_without_ddp)
loss_scaler = NativeScaler()
print("Use step level LR & WD scheduler!")
lr_schedule_values = utils.cosine_scheduler(
args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch,
warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps,
)
if args.weight_decay_end is None:
args.weight_decay_end = args.weight_decay
wd_schedule_values = utils.cosine_scheduler(args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch)
print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values)))
ceph_args = {
'use_ceph_checkpoint': args.use_ceph_checkpoint,
'ceph_checkpoint_prefix': args.ceph_checkpoint_prefix,
'ckpt_path_split': args.ckpt_path_split,
'local_rank': args.gpu,
}
if ceph_args['use_ceph_checkpoint']:
print("Will automatically upload model on ceph")
assert ceph_args['ceph_checkpoint_prefix'] != '', "Should set prefix for ceph checkpoint!"
utils.auto_load_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler,
ceph_args=ceph_args,
)
torch.cuda.empty_cache()
print(f"Start training for {args.epochs} epochs")
print(f"Use bf16 {args.bf16}")
print(f"Mask ratio: {args.mask_ratio}")
print(f"Mask typr: {args.mask_type}")
distill_final_features = args.clip_teacher_final_dim > 0
print(f"Distill final (AttnPoll) features of teacher: {distill_final_features}")
print(f"Loss ratio: {args.clip_loss_ratio}")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
if log_writer is not None:
log_writer.set_step(epoch * num_training_steps_per_epoch)
train_stats = train_one_epoch(
model, data_loader_train,
optimizer, device, epoch, loss_scaler,
args.clip_grad, log_writer=log_writer,
start_steps=epoch * num_training_steps_per_epoch,
lr_schedule_values=lr_schedule_values,
wd_schedule_values=wd_schedule_values,
clip_teacher_model=clip_teacher_model,
clip_input_resolution=args.clip_input_resolution,
distill_final_features=distill_final_features,
clip_loss_ratio=args.clip_loss_ratio,
mae_teacher_model=mae_teacher_model,
mae_input_resolution=args.mae_input_resolution,
mae_loss_ratio=args.mae_loss_ratio,
td_ratio=args.mae_tubelet_size//args.tubelet_size,
mask_type=args.mask_type,
mask_ratio=args.mask_ratio,
bf16=args.bf16,
)
if args.output_dir:
if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs:
utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp,
optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch,
ceph_args=ceph_args,
)
utils.save_model(
args=args, model=model, model_without_ddp=model_without_ddp,
optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch,
model_name='latest', ceph_args=ceph_args,
)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch, 'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
opts, ds_init = get_args()
if opts.output_dir:
Path(opts.output_dir).mkdir(parents=True, exist_ok=True)
main(opts, ds_init)
|