File size: 20,674 Bytes
2d9a728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
import logging
import os
import json
import random
import io
import torch
import numpy as np

from dataset.base_dataset import BaseDataset
from dataset.text_prompt import kinetics_templates, imagenet_templates
from dataset.utils import pre_text
from dataset.video_utils import VIDEO_READER_FUNCS
from dataset.serialize import get_local_rank, TorchShmSerializedList

logger = logging.getLogger(__name__)


class ImgTxtPtTrainDataset(BaseDataset):
    media_type = "image"

    def __init__(self, ann_file, transform, num_epochs=1):
        super().__init__()

        logger.info(f"ann_file: {ann_file}")

        self.media_type = ann_file.media_type
        self.label_file = ann_file.anno_path
        self.data_root = ann_file.data_root
        self.data_root_prefix = ann_file.get("data_root_prefix", "")
        self.min_caption_length = ann_file.get("min_caption_length", 2)
        self.caption_augmentation = ann_file.get("caption_augmentation", None)
        self.transform = transform
        # each caption has multiple image as ground_truth, e.g., ssv2
        self.has_multi_vision_gt = ann_file.get("has_multi_vision_gt", False)
        assert not self.has_multi_vision_gt

        self.crop_img = ann_file.get("crop_img", False)

        self.use_prompt = ann_file.get("prompt", "") != ""
        if self.use_prompt:
            if ann_file.prompt == "imagenet":
                self.prompt = imagenet_templates
                logger.info(f"Use prompt for ImageNet")
            elif ann_file.prompt == "kinetics":
                self.prompt = kinetics_templates
                logger.info(f"Use prompt for Kinetics")
            else:
                raise NotImplementedError(ann_file.prompt)
            logger.info(self.prompt)


        if self.use_prompt and self.caption_augmentation is not None:
            raise NotImplementedError("You can't use prompt because of multiple captions!")
        

        if '.json' in self.label_file:
            logger.info(f"Loading json file {self.label_file}")

            if get_local_rank() == 0:  # Only one rank need to read the file
                with io.BytesIO(self.client.get(self.label_file)) as f:
                # with open(self.label_file, 'r') as f:
                    annos = json.load(f)

                if ann_file.get("jump_filter", False):
                    logger.info("Jump filter!")
                else:
                    if self.caption_augmentation is not None:
                        # filter out the caption with length less than min_caption_length
                        new_annos = []
                        if self.media_type == "audio_video" and self.caption_augmentation.caption_sample_type == 'avs_all':
                            for anno in annos:
                                ok = True
                                if not anno['video'].endswith('.mp4'): 
                                    ok = False
                                for k in anno.keys():
                                    if "caption" in k and 'asr' not in k:
                                        tmp_c = pre_text(anno[k])
                                        if len(tmp_c.split()) < self.min_caption_length: 
                                            ok = False
                                            break
                                if ok:
                                    new_annos.append(anno)
                        elif self.caption_augmentation.caption_sample_type == 'uniform':
                            for anno in annos:
                                if "captions" in anno.keys():
                                    caption_key = "captions"
                                else:
                                    caption_key = "caption"
                                    
                                assert type(anno[caption_key]) is list, type(anno[caption_key])
                                caption_list = []
                                for c in anno[caption_key]:
                                    tmp_c = pre_text(c)
                                    if len(tmp_c.split()) >= self.min_caption_length:
                                        caption_list.append(tmp_c)

                                if len(caption_list) > 0:
                                    new_annos.append(anno)
                        else:
                            raise NotImplementedError(ann_file)
                        
                        logger.info(f"Num samples: {len(annos)}")
                        logger.info(f"Num samples not too short: {len(new_annos)} min_caption_length={self.min_caption_length}")
                        annos = new_annos
                    else:
                        # filter out the caption with length less than min_caption_length
                        captions = [pre_text(anno["caption"]) for anno in annos]
                        captions_len = [len(caption.split()) for caption in captions]
                        logger.info("Num samples: {}".format(len(captions)))
                        logger.info("Num samples too short: {}".format(sum([l < self.min_caption_length for l in captions_len])))
                        annos = [anno for anno, l in zip(annos, captions_len) if l >= self.min_caption_length]
                if num_epochs < 1:
                    raise NotImplementedError
            else:
                annos = []
            
            self.anno = TorchShmSerializedList(annos)
            self.num_examples = len(self.anno)
            logger.info(f"num_examples: {self.num_examples}")

        else:
            raise NotImplementedError("We need json file!!!")

    def __len__(self):
        return self.num_examples

    def get_caption(self, index):
        if '.json' in self.label_file:
            if self.caption_augmentation is not None:
                if self.caption_augmentation.caption_sample_type == 'avs_all':
                    caption_dict = {}
                    for k in self.anno[index].keys():
                        if 'caption' in k:
                            caption_dict[k] = self.anno[index][k]
                else:
                    if "captions" in self.anno[index].keys():
                        captions = self.anno[index]["captions"]
                    else:
                        captions = self.anno[index]["caption"]
            else:
                caption = self.anno[index]["caption"]
        else:
            raise NotImplementedError

        if self.caption_augmentation is not None:
            if self.caption_augmentation.caption_sample_type == 'uniform':
                caption = random.choice(captions)
            elif self.caption_augmentation.caption_sample_type == 'avs_all':
                caption = caption_dict
            else:
                raise NotImplementedError
        return caption
    
    def get_anno(self, index):
        assert self.media_type == 'image', self.media_type
        anno = {"caption": self.get_caption(index)}
        anno["image"] = self.data_root_prefix + os.path.join(self.data_root, self.anno[index]["image"])
        if self.use_prompt:
            anno["caption"] = random.choice(self.prompt).format(anno["caption"])
        if self.crop_img:
            anno["crop_bbox"] = self.anno[index]["crop_bbox"]
        return anno

    def pre_caption(self, caption):
        if type(caption) is str:
            return pre_text(caption)
        elif type(caption) is dict:
            assert self.caption_augmentation.caption_sample_type == 'avs_all'
            caption_dict = {}
            for k in caption.keys():
                caption_dict[k] = pre_text(caption[k])
            return caption_dict
        else:
            raise NotImplementedError(caption)

    def __getitem__(self, index):
        try:
            ann = self.get_anno(index)
            caption = self.pre_caption(ann["caption"])
            # key = ann["caption"] if self.has_multi_vision_gt else basename(ann["image"])
            if self.crop_img:
                data_path = {"image":ann["image"], "crop_bbox":ann["crop_bbox"]}
                image, index = self.load_and_transform_media_data(index, data_path)
            else:
                image, index = self.load_and_transform_media_data(index, ann["image"])
            return image, caption, index
        except Exception as e:
            logger.warning(f"Caught exception {e} when loading image {ann}")
            # raise e
            print(e)
            index = np.random.randint(0, len(self))
            return self.__getitem__(index)


class VidTxtPtTrainDataset(ImgTxtPtTrainDataset):
    media_type = "video"

    def __init__(
        self,
        ann_file,
        transform,
        num_frames=4,
        video_reader_type="decord",
        sample_type="rand",
        num_tries=3,
        num_epochs=1
    ):
        super().__init__(ann_file, transform, num_epochs)
        self.num_frames = num_frames
        self.video_reader_type = video_reader_type
        self.video_reader = VIDEO_READER_FUNCS[video_reader_type]
        self.sample_type = sample_type
        self.num_tries = num_tries

        self.is_paragraph_retrieval = ann_file.get("is_paragraph_retrieval", False)
        self.read_clip_from_video = ann_file.get("read_clip_from_video", False)
        
        if self.is_paragraph_retrieval:
            raise NotImplementedError

    def get_anno(self, index):
        assert self.media_type == "video", self.media_type
        anno = {"caption": self.get_caption(index)}
        anno["video"] = self.data_root_prefix + os.path.join(self.data_root, self.anno[index]["video"])
        if self.read_clip_from_video:
            anno["video_start_frame"] = self.anno[index]["video_start_frame"]
            anno["video_end_frame"] = self.anno[index]["video_end_frame"]
        if self.use_prompt:
            anno["caption"] = random.choice(self.prompt).format(anno["caption"])
        
        return anno

    def __getitem__(self, index):
        try:
            ann = self.get_anno(index)
            caption = self.pre_caption(ann["caption"])
            
            if self.read_clip_from_video:
                data_path = {
                    "video": ann["video"],
                    "video_start_frame": ann["video_start_frame"],
                    "video_end_frame": ann["video_end_frame"],
                    "read_clip_from_video": True
                }
            else:
                data_path = ann["video"]

            video, index = self.load_and_transform_media_data(index, data_path)

            return video, caption, index
        
        except Exception as e:
            logger.warning(f"Caught exception {e} when loading video {ann}")
            # raise e
            print(e)
            index = np.random.randint(0, len(self))
            return self.__getitem__(index)


class AudioVidTxtPtTrainDataset(VidTxtPtTrainDataset):
    media_type = "audio_video"

    def __init__(
        self,
        ann_file,
        transform,
        audio_sample_rate=16000, 
        audio_reader_type='torchaudio',
        max_audio_length=10,
        num_frames=4,
        video_reader_type="decord",
        sample_type="rand",
        num_tries=3,
        num_epochs=1
    ):
        super().__init__(ann_file, transform, num_epochs=num_epochs, num_frames=num_frames, video_reader_type=video_reader_type, sample_type=sample_type, num_tries=num_tries)

        assert self.media_type == 'audio_video', self.media_type
        self.audio_sample_rate = audio_sample_rate
        self.audio_reader_type = audio_reader_type
        self.max_audio_length = max_audio_length

        self.has_multi_audio_gt = ann_file.get("has_multi_audio_gt", False)
        self.read_audio_from_video = ann_file.get("read_audio_from_video", False)
        self.zero_audio_padding_for_video = ann_file.get("zero_audio_padding_for_video", False)

        self.now_tries = 0

    def get_anno(self, index):
        anno = {"caption": self.get_caption(index)}
        anno["video"] = self.data_root_prefix + os.path.join(self.data_root, self.anno[index]["video"])
        if self.read_clip_from_video:
            anno["video_start_frame"] = self.anno[index]["video_start_frame"]
            anno["video_end_frame"] = self.anno[index]["video_end_frame"]
        
        if "audio" in self.anno[index].keys():
            anno["audio"] = self.data_root_prefix + os.path.join(self.data_root, self.anno[index]["audio"])

        if self.use_prompt:
            anno["caption"] = random.choice(self.prompt).format(anno["caption"])
        
        return anno

    def __getitem__(self, index):
        try:
            ann = self.get_anno(index)
            caption = self.pre_caption(ann["caption"])
            data_path = {'video': ann["video"]}

            if self.read_clip_from_video:
                data_path["video_start_frame"] = ann["video_start_frame"]
                data_path["video_end_frame"] = ann["video_end_frame"]
            
            if "audio" in ann.keys():
                data_path["read_audio_from_video"] = False
                data_path["audio"] = ann["audio"]
            else:
                data_path["read_audio_from_video"] = self.read_audio_from_video

            data_path["read_clip_from_video"] = self.read_clip_from_video
            
            media, index = self.load_and_transform_media_data(index, data_path)
            self.now_tries = 0 

            audio = media[0]
            if audio is None and self.zero_audio_padding_for_video:
                logger.warning(f"No audio in {data_path}")
                media[0] = torch.zeros((998, 64), dtype=torch.float32)

            return media, caption, index
        
        except Exception as e:
            # print(e)
            if self.num_tries < self.now_tries:
                raise e
            else:
                self.now_tries += 1
            logger.warning(f"Caught exception {e} when loading audio-video {ann}")
            # logger.warning(f"Caught exception when loading audio-video {ann['video']}")
            
            index = np.random.randint(0, len(self))
            return self.__getitem__(index)


class AudioTxtPtTrainDataset(BaseDataset):
    media_type = "audio"

    def __init__(self, ann_file, transform, 
                audio_sample_rate=16000, 
                audio_reader_type='torchaudio',
                max_audio_length=10,
                num_tries=3,
                num_epochs=1):
        super().__init__()

        logger.info(f"ann_file: {ann_file}")

        self.media_type = ann_file.media_type
        self.label_file = ann_file.anno_path
        self.data_root = ann_file.data_root
        self.data_root_prefix = ann_file.get("data_root_prefix", "")
        self.min_caption_length = ann_file.get("min_caption_length", 2)
        self.caption_augmentation = ann_file.get("caption_augmentation", None)
        self.transform = transform
        self.audio_sample_rate = audio_sample_rate
        self.max_audio_length = max_audio_length
        self.audio_reader_type = audio_reader_type
        self.has_multi_audio_gt = ann_file.get("has_multi_audio_gt", False)
        assert not self.has_multi_audio_gt

        self.use_prompt = ann_file.get("prompt", "") != ""
        if self.use_prompt:
            if ann_file.prompt == "imagenet":
                self.prompt = imagenet_templates
                logger.info(f"Use prompt for ImageNet")
            elif ann_file.prompt == "kinetics":
                self.prompt = kinetics_templates
                logger.info(f"Use prompt for Kinetics")
            else:
                raise NotImplementedError(ann_file.prompt)
            logger.info(self.prompt)


        if self.use_prompt and self.caption_augmentation is not None:
            raise NotImplementedError("You can't use prompt because of multiple captions!")

        if '.json' in self.label_file:
            logger.info(f"Loading json file {self.label_file}")

            if get_local_rank() == 0:  # Only one rank need to read the file
                with io.BytesIO(self.client.get(self.label_file)) as f:
                # with open(self.label_file, 'r') as f:
                    annos = json.load(f)

                if ann_file.get("jump_filter", False):
                    logger.info("Jump filter!")
                else:
                    if self.caption_augmentation is not None:
                        # filter out the caption with length less than min_caption_length
                        new_annos = []
                        if self.caption_augmentation.caption_sample_type == 'uniform':
                            for anno in annos:
                                if "captions" in anno.keys():
                                    caption_key = "captions"
                                else:
                                    caption_key = "caption"
                                    
                                assert type(anno[caption_key]) is list, type(anno[caption_key])
                                caption_list = []
                                for c in anno[caption_key]:
                                    tmp_c = pre_text(c)
                                    if len(tmp_c.split()) >= self.min_caption_length:
                                        caption_list.append(tmp_c)

                                if len(caption_list) > 0:
                                    new_annos.append(anno)
                        else:
                            raise NotImplementedError(ann_file)
                        
                        logger.info(f"Num samples: {len(annos)}")
                        logger.info(f"Num samples not too short: {len(new_annos)} min_caption_length={self.min_caption_length}")
                        annos = new_annos
                    else:
                        # filter out the caption with length less than min_caption_length
                        captions = [pre_text(anno["caption"]) for anno in annos]
                        captions_len = [len(caption.split()) for caption in captions]
                        logger.info("Num samples: {}".format(len(captions)))
                        logger.info("Num samples too short: {}".format(sum([l < self.min_caption_length for l in captions_len])))
                        annos = [anno for anno, l in zip(annos, captions_len) if l >= self.min_caption_length]
                if num_epochs < 1:
                    raise NotImplementedError
            else:
                annos = []
            
            self.anno = TorchShmSerializedList(annos)
            self.num_examples = len(self.anno)
            logger.info(f"num_examples: {self.num_examples}")

        else:
            raise NotImplementedError("We need json file!!!")

    def __len__(self):
        return self.num_examples

    def get_caption(self, index):
        if '.json' in self.label_file:
            if self.caption_augmentation is not None:
                if "captions" in self.anno[index].keys():
                    captions = self.anno[index]["captions"]
                else:
                    captions = self.anno[index]["caption"]
            else:
                caption = self.anno[index]["caption"]
        else:
            raise NotImplementedError

        if self.caption_augmentation is not None:
            if self.caption_augmentation.caption_sample_type == 'uniform':
                caption = random.choice(captions)
            else:
                raise NotImplementedError
        return caption
    
    def get_anno(self, index):
        assert self.media_type == 'audio', self.media_type
        anno = {"caption": self.get_caption(index)}
        anno["audio"] = self.data_root_prefix + os.path.join(self.data_root, self.anno[index]["audio"])
        if self.use_prompt:
            anno["caption"] = random.choice(self.prompt).format(anno["caption"])

        return anno

    def pre_caption(self, caption):
        if type(caption) is str:
            return pre_text(caption)
        else:
            raise NotImplementedError(caption)
        
    def __getitem__(self, index):
        try:
            ann = self.get_anno(index)
            caption = self.pre_caption(ann["caption"])
            audio, index = self.load_and_transform_media_data(index, ann["audio"])
            return audio, caption, index
        except Exception as e:
            logger.warning(f"Caught exception {e} when loading audio {ann}")
            print(e)
            index = np.random.randint(0, len(self))
            return self.__getitem__(index)