File size: 19,233 Bytes
2d9a728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
from os.path import basename
import numpy as np
import logging
import torch

from dataset.base_dataset import BaseDataset
from dataset.utils import load_anno, pre_text
from dataset.video_utils import VIDEO_READER_FUNCS
from dataset.text_prompt import kinetics_templates_action_clip as kinetics_templates

logger = logging.getLogger(__name__)


class AudioTxtRetTrainDataset(BaseDataset):
    media_type = "audio"

    def __init__(
            self, ann_file, transform, audio_sample_rate, 
            audio_reader_type='librosa', max_audio_length=0, num_tries=3):
        super(AudioTxtRetTrainDataset, self).__init__()
        self.anno_list = load_anno(ann_file)
        self.transform = transform
        self.audio_reader_type = audio_reader_type
        self.num_tries = num_tries
        self.has_multi_audio_gt = ann_file.get("has_multi_audio_gt", False)
        self.trimmed30 = ann_file.get("trimmed30", False)
        
        self.max_audio_length = max_audio_length
        self.audio_sample_rate = audio_sample_rate
        self.match_ids = {}

        n = 0
        for ann in self.anno_list:
            key = ann["caption"] if self.has_multi_audio_gt else basename(ann["image"])
            if key not in self.match_ids:
                self.match_ids[key] = n
                n += 1

    def __len__(self):
        return len(self.anno_list)

    def __getitem__(self, index):
        try:
            ann = self.anno_list[index]
            audio, index = self.load_and_transform_media_data(index, ann['image'])
            caption = pre_text(ann["caption"])
            key = ann["caption"] if self.has_multi_audio_gt else basename(ann["image"])
            return audio, caption, self.match_ids[key]
        except Exception as e:
            logger.error(e)
            print(e, flush=True)
            index = np.random.randint(0, len(self))
            return self.__getitem__(index)


class AudioTxtRetEvalDataset(BaseDataset):
    media_type = "audio"

    def __init__(
            self, ann_file, transform, audio_sample_rate,
            audio_reader_type='librosa', max_audio_length=0, num_tries=3):
        super(AudioTxtRetEvalDataset, self).__init__()
        self.anno_list = load_anno(ann_file)
        self.transform = transform
        self.audio_sample_rate = audio_sample_rate
        self.max_audio_length = max_audio_length
        self.audio_reader_type = audio_reader_type
        self.num_tries = num_tries
        self.has_multi_audio_gt = ann_file.get("has_multi_audio_gt", False)
        self.trimmed30 = ann_file.get("trimmed30", False)
        self.max_txt_l = ann_file.get("max_txt_l", 32)

        self.text = None
        self.audio = None
        self.txt2img = None
        self.img2txt = None

        self.build_data()

    def build_data(self):
        self.text = []
        self.audio = []
        self.txt2img = {}
        self.img2txt = {}
        if self.has_multi_audio_gt:
            self.build_data_multi_audio_gt()
        else:
            self.build_data_multi_txt_gt()

    def build_data_multi_audio_gt(self):
        """each text may have multiple ground_truth audio, e.g., ssv2"""
        audio_id = 0
        for txt_id, ann in enumerate(self.anno_list):
            self.text.append(pre_text(ann["caption"]))
            self.txt2img[txt_id] = []
            _audios = ann["image"] \
                if isinstance(ann["image"], list) else [ann["image"], ]
            for i, audio in enumerate(_audios):
                self.audio.append(audio)
                self.txt2img[txt_id].append(audio_id)
                self.img2txt[audio_id] = txt_id
                audio_id += 1

    def build_data_multi_txt_gt(self):
        """each audio may have multiple ground_truth text, e.g., COCO and Flickr30K"""
        txt_id = 0
        for audio_id, ann in enumerate(self.anno_list):
            self.audio.append(ann["image"])
            self.img2txt[audio_id] = []
            _captions = ann["caption"] \
                if isinstance(ann["caption"], list) else [ann["caption"], ]
            for i, caption in enumerate(_captions):
                self.text.append(pre_text(caption))
                self.img2txt[audio_id].append(txt_id)
                self.txt2img[txt_id] = audio_id
                txt_id += 1

    def __len__(self):
        return len(self.anno_list)

    def __getitem__(self, index):
        ann = self.anno_list[index]
        audio, index = self.load_and_transform_media_data(index, ann["image"])
        return audio, index



class ImgTxtRetTrainDataset(BaseDataset):
    media_type = "image"

    def __init__(self, ann_file, transform):
        super(ImgTxtRetTrainDataset, self).__init__()
        self.anno_list = load_anno(ann_file)
        self.transform = transform
        # each caption has multiple image as ground_truth, e.g., ssv2
        self.has_multi_txt_gt = ann_file.get("has_multi_txt_gt", False)
        self.has_multi_vision_gt = ann_file.get("has_multi_vision_gt", False)

        if self.has_multi_txt_gt:
            logger.info("The dataset has multiple ground truth for a image/video!")
            tmp_anno_list = []
            for ann in self.anno_list:
                img_path = ann["image"]
                for caption in ann["caption"]:
                    tmp_anno_list.append({
                        "image": img_path,
                        "caption": caption
                    })
            self.anno_list = tmp_anno_list
            
        self.match_ids = {}
        n = 0
        for ann in self.anno_list:
            key = ann["caption"] if self.has_multi_vision_gt else basename(ann["image"])
            if key not in self.match_ids:
                self.match_ids[key] = n
                n += 1

    def __len__(self):
        return len(self.anno_list)

    def __getitem__(self, index):
        try:
            ann = self.anno_list[index]
            image, index = self.load_and_transform_media_data(index, ann["image"])
            caption = pre_text(ann["caption"])
            key = ann["caption"] if self.has_multi_vision_gt else basename(ann["image"])
            return image, caption, self.match_ids[key]
        except Exception as e:
            logger.error(e)
            print(e, flush=True)
            index = np.random.randint(0, len(self))
            return self.__getitem__(index)


class VidTxtRetTrainDataset(ImgTxtRetTrainDataset):
    media_type = "video"

    def __init__(
            self, ann_file, transform, num_frames=4,
            video_reader_type="decord", sample_type="rand", num_tries=3):
        super(VidTxtRetTrainDataset, self).__init__(ann_file, transform)
        self.num_frames = num_frames
        self.video_reader_type = video_reader_type
        self.video_reader = VIDEO_READER_FUNCS[video_reader_type]
        self.sample_type = sample_type
        self.num_tries = num_tries
        self.read_clip_from_video = ann_file.get("read_clip_from_video", False)
        if self.read_clip_from_video:
            raise NotImplementedError("key for match_ids is not implemented!")
        self.is_paragraph_retrieval = ann_file.get("is_paragraph_retrieval", False)
        if self.is_paragraph_retrieval:
            self.anno_list = preprocess_para_retrieval_data(self.anno_list)
        self.trimmed30 = ann_file.get("trimmed30", False)
        if self.trimmed30:
            logger.info("Trimming the video, only use the first 30s!")


class AudioVidTxtRetTrainDataset(VidTxtRetTrainDataset):
    media_type = "audio_video"

    def __init__(
            self, ann_file, transform, 
            audio_sample_rate=16000, 
            audio_reader_type='torchaudio',
            max_audio_length=10,
            num_frames=4,
            video_reader_type="decord", sample_type="rand", num_tries=3):
        super(AudioVidTxtRetTrainDataset, self).__init__(ann_file, transform,
            num_frames=num_frames, video_reader_type=video_reader_type, sample_type=sample_type, num_tries=num_tries)

        assert self.media_type == 'audio_video', self.media_type
        self.audio_sample_rate = audio_sample_rate
        self.audio_reader_type = audio_reader_type
        self.max_audio_length = max_audio_length

        self.has_multi_audio_gt = ann_file.get("has_multi_audio_gt", False)
        self.read_audio_from_video = ann_file.get("read_audio_from_video", False)
        self.zero_audio_padding_for_video = ann_file.get("zero_audio_padding_for_video", False)

    def __getitem__(self, index):
        try:
            ann = self.anno_list[index]
            caption = pre_text(ann["caption"])

            data_path = {'video': ann["image"]}
            data_path["read_clip_from_video"] = self.read_clip_from_video
            if "audio" in ann.keys():
                data_path["read_audio_from_video"] = False
                data_path["audio"] = ann["audio"]
            else:
                data_path["read_audio_from_video"] = self.read_audio_from_video
            
            media, index = self.load_and_transform_media_data(index, data_path)

            audio = media[0]
            if audio is None and self.zero_audio_padding_for_video:
                logger.warning(f"No audio in {data_path}")
                media[0] = torch.zeros((998, 64), dtype=torch.float32)

            key = ann["caption"] if self.has_multi_vision_gt else basename(ann["image"])
            return media, caption, self.match_ids[key]
        
        except Exception as e:
            logger.error(e)
            print(e, flush=True)
            index = np.random.randint(0, len(self))
            return self.__getitem__(index)
        

class ImgTxtRetEvalDataset(BaseDataset):
    media_type = "image"

    def __init__(self, ann_file, transform):
        super(ImgTxtRetEvalDataset, self).__init__()
        self.raw_anno_list = load_anno(ann_file)

        self.transform = transform
        self.has_multi_vision_gt = ann_file.get("has_multi_vision_gt", False)  # each caption has multiple image as ground_truth
        
        self.is_act_rec = ann_file.get("is_act_rec", False)
        self.max_txt_l = ann_file.get("max_txt_l", 32) # NOTE

        self.text = None
        self.image = None
        self.txt2img = None
        self.img2txt = None
        self.build_data()

    def build_data(self):
        self.text = []
        self.image = []
        self.txt2img = {}
        self.img2txt = {}
        if self.is_act_rec:
            self.build_data_act_rec()
        elif self.has_multi_vision_gt:
            self.build_data_multi_img_gt()
        else:
            self.build_data_multi_txt_gt()
        self.anno_list = [dict(image=e) for e in self.image]
    
    def build_data_act_rec(self):
        """action recognition task, e.g., kinetics400"""
        text = list(set([e["caption"] for e in self.raw_anno_list]))
        text2label = {e: i for i, e in enumerate(text)}
        text = [[t.format(e) for t in kinetics_templates] for e in text]
        text = [e for l in text for e in l]
        self.text = [pre_text(e) for e in text]
        self.num_prompts = len(kinetics_templates)
        self.img2txt = {i: text2label[e["caption"]] for i, e in enumerate(self.raw_anno_list)}
        self.txt2img = [[] for _ in range(len(text) // len(kinetics_templates))]
        for i, e in enumerate(self.raw_anno_list):
            self.image.append(e["image"])
            self.txt2img[text2label[e["caption"]]].append(i)
        logger.info(f"Action recognition, number of prompts: {self.num_prompts}")
        logger.info(f"Action recognition, number of classes: {len(self.text)}")

    def build_data_multi_img_gt(self):
        """each text may have multiple ground_truth image, e.g., ssv2"""
        img_id = 0
        for txt_id, ann in enumerate(self.raw_anno_list):
            self.text.append(pre_text(ann["caption"]))
            self.txt2img[txt_id] = []
            _images = ann["image"] \
                if isinstance(ann["image"], list) else [ann["image"], ]
            for i, image in enumerate(_images):
                self.image.append(image)
                self.txt2img[txt_id].append(img_id)
                self.img2txt[img_id] = txt_id
                img_id += 1

    def build_data_multi_txt_gt(self):
        """each image may have multiple ground_truth text, e.g., COCO and Flickr30K"""
        txt_id = 0
        for img_id, ann in enumerate(self.raw_anno_list):
            self.image.append(ann["image"])
            self.img2txt[img_id] = []
            _captions = ann["caption"] \
                if isinstance(ann["caption"], list) else [ann["caption"], ]
            for i, caption in enumerate(_captions):
                self.text.append(pre_text(caption))
                self.img2txt[img_id].append(txt_id)
                self.txt2img[txt_id] = img_id
                txt_id += 1

    def __len__(self):
        return len(self.anno_list)

    def __getitem__(self, index):
        ann = self.anno_list[index]
        image, index = self.load_and_transform_media_data(index, ann["image"])
        return image, index


class VidTxtRetEvalDataset(ImgTxtRetEvalDataset):
    media_type = "video"

    def __init__(
            self, ann_file, transform, num_frames=4,
            video_reader_type="decord", sample_type="rand", num_tries=1):
        super(VidTxtRetEvalDataset, self).__init__(ann_file, transform)
        self.num_frames = num_frames
        self.video_reader_type = video_reader_type
        self.video_reader = VIDEO_READER_FUNCS[video_reader_type]
        self.sample_type = sample_type
        self.num_tries = num_tries
        self.is_paragraph_retrieval = ann_file.get("is_paragraph_retrieval", False)
        if self.is_paragraph_retrieval:
            logger.info("Preprocess paragraph retrieval data!!!")
            self.anno_list = preprocess_para_retrieval_data(self.raw_anno_list)
        self.trimmed30 = ann_file.get("trimmed30", False)
        if self.trimmed30:
            logger.info("Trimming the video, only use the first 30s!!!")
        self.read_clip_from_video = ann_file.get("read_clip_from_video", False)
        self.use_subtitle = ann_file.get("use_subtitle", False)
        if self.use_subtitle:
            if self.is_act_rec:
                raise NotImplementedError
            self.build_subtitle_data()

        self.build_data()

    def __getitem__(self, index):
        ann = self.anno_list[index]
        if self.read_clip_from_video:
            raise NotImplementedError("key for match_ids is not implemented!")
        else:
            data_path = ann["image"]
        image, index = self.load_and_transform_media_data(index, data_path)
        return image, index

    def build_subtitle_data(self):
        self.subtitle = []
        for _, ann in enumerate(self.raw_anno_list):
            if self.trimmed30:
                if "asr_trimmed_30" in ann.keys():
                    self.subtitle.append(pre_text(ann["asr_trimmed_30"]))
                else:
                    self.subtitle.append("")
            else:
                if "asr" in ann.keys():
                    self.subtitle.append(pre_text(ann["asr"]))
                else:
                    self.subtitle.append("")
    

def preprocess_para_retrieval_data(anno_list):
    processed_anno_list = []
    for d in anno_list:
        d["caption"] = " ".join(d.pop("caption"))
        processed_anno_list.append(d)
    return processed_anno_list


class VidTxtRetMCEvalDataset(BaseDataset):
    """For MSRVTT-MC test task"""
    media_type = "video"

    def __init__(self, ann_file, transform, num_frames=4,
                 video_reader_type="decord", sample_type="rand", num_tries=1):
        super(VidTxtRetMCEvalDataset, self).__init__()
        self.anno_list = load_anno(ann_file)
        self.transform = transform
        # video args
        self.num_frames = num_frames
        self.video_reader_type = video_reader_type
        self.video_reader = VIDEO_READER_FUNCS[video_reader_type]
        self.sample_type = sample_type
        self.num_tries = num_tries

    def __len__(self):
        return len(self.anno_list)

    def __getitem__(self, index):
        ann = self.anno_list[index]
        image, index = self.load_and_transform_media_data(index, ann["image"])
        caption = [pre_text(e) for e in ann["caption"]]  # len=5
        answer = ann["answer"]
        return image, caption, answer, ann
    

class VidTxtRetMCNewEvalDataset(BaseDataset):
    """For SSV2-MC and Charades-MC test task"""
    media_type = "video"

    def __init__(self, ann_file, transform, num_frames=4,
                 video_reader_type="decord", sample_type="rand", num_tries=1):
        super(VidTxtRetMCNewEvalDataset, self).__init__()
        self.anno_list = load_anno(ann_file)
        self.transform = transform
        # video args
        self.num_frames = num_frames
        self.video_reader_type = video_reader_type
        self.video_reader = VIDEO_READER_FUNCS[video_reader_type]
        self.sample_type = sample_type
        self.num_tries = num_tries

    def __len__(self):
        return len(self.anno_list)

    def __getitem__(self, index):
        ann = self.anno_list[index]
        image, index = self.load_and_transform_media_data(index, ann["image"])
        option = [pre_text(e) for e in ann["option"]]  # len=174
        answer = ann["answer"]
        if isinstance(answer, list):
            answer = torch.Tensor(answer)
        return image, option, answer, ann


class AudioVidTxtRetEvalDataset(VidTxtRetEvalDataset):
    media_type = "audio_video"

    def __init__(
            self, ann_file, transform, num_frames=4,
            video_reader_type="decord", sample_type="rand", num_tries=1,
            audio_sample_rate=16000, 
            audio_reader_type='torchaudio',
            max_audio_length=10):
        super(AudioVidTxtRetEvalDataset, self).__init__(ann_file, transform, 
            num_frames=num_frames, video_reader_type=video_reader_type,
            sample_type=sample_type, num_tries=num_tries)
        
        self.audio_sample_rate = audio_sample_rate
        self.audio_reader_type = audio_reader_type
        self.max_audio_length = max_audio_length
        self.read_clip_from_video = ann_file.get("read_clip_from_video", False)
        self.read_audio_from_video = ann_file.get("read_audio_from_video", False)
        self.zero_audio_padding_for_video = ann_file.get("zero_audio_padding_for_video", False)

    def __getitem__(self, index):
        ann = self.anno_list[index]
        data_path = {'video': ann["image"]}

        if self.read_clip_from_video:
            raise NotImplementedError("Need to modify load_anno!")
        
        if not self.read_audio_from_video:
            raise NotImplementedError("Need to modify load_anno!")
        
        data_path["read_clip_from_video"] = self.read_clip_from_video
        data_path["read_audio_from_video"] = self.read_audio_from_video

        media, index = self.load_and_transform_media_data(index, data_path)
        audio = media[0]
        if audio is None and self.zero_audio_padding_for_video:
            media[0] = torch.zeros((998, 64), dtype=torch.float32)
        
        return media, index