Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,449 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
import logging
from functools import lru_cache
import torch
import torch.nn.functional as F
from torch import nn
from models.utils import allgather_wgrad
logger = logging.getLogger(__name__)
def get_sim(
vision_proj: torch.Tensor,
text_proj: torch.Tensor,
temp=1.0,
agg_method="mean",
):
"""calculate pair-wise video-text similarity.
Args:
vision_proj (torch.Tensor): The vision representation. Shape: [B,T,C].
text_proj (torch.Tensor): The text representation. Shape: [B,C].
temp (torch.Tensor): The temperature. Shape: [].
Returns: The similarity between video and text. Shape: [B,B].
"""
vision_proj = F.normalize(vision_proj, dim=-1)
text_proj = F.normalize(text_proj, dim=-1)
if vision_proj.ndim == 3:
sim_v2t = torch.einsum("mld,nd->mln", vision_proj, text_proj) / temp # [B, L, B]
sim_t2v = torch.einsum("nd,mld->nlm", text_proj, vision_proj) / temp # [B, L, B]
if agg_method == "mean":
sim_v2t = sim_v2t.mean(1)
sim_t2v = sim_t2v.mean(1)
elif agg_method == "max":
sim_v2t = sim_v2t.max(1)[0]
sim_t2v = sim_t2v.max(1)[0]
elif text_proj.ndim == 3:
sim_v2t = torch.einsum("nd,mld->nlm", vision_proj, text_proj) / temp # [B, L, B]
sim_t2v = torch.einsum("nld,md->nlm", text_proj, vision_proj) / temp # [B, L, B]
if agg_method == "mean":
sim_v2t = sim_v2t.mean(1)
sim_t2v = sim_t2v.mean(1)
elif agg_method == "max":
sim_v2t = sim_v2t.max(1)[0]
sim_t2v = sim_t2v.max(1)[0]
else:
sim_v2t = vision_proj @ text_proj.T / temp
sim_t2v = sim_v2t.T
return sim_v2t, sim_t2v
class VTC_VTM_Loss(nn.Module):
"""video-text contrastive and matching losses."""
def __init__(self, vtm_hard_neg):
super().__init__()
self.vtm_hard_neg = vtm_hard_neg
def vtc_loss(
self,
vision_proj: torch.Tensor,
text_proj: torch.Tensor,
idx: torch.Tensor,
temp=1.0,
all_gather=True,
agg_method="mean",
):
"""forward to calculate the loss
Args:
vision_proj (torch.Tensor): The vision representation. Shape: [B,T,C].
text_proj (torch.Tensor): The text representation. Shape: [B,C].
idx (torch.Tensor): The index for each example. Shape: [B,].
temp (torch.Tensor): The temperature. Shape: [].
all_gather (bool): If true, will gather samples across all the GPUs and calculate loss across the gathered samples.
Returns: loss_vtc (torch.Tensor): The video-text contrastive loss. Shape: [].
"""
if all_gather:
gather_args = self.get_gather_args()
vision_proj = allgather_wgrad(vision_proj, gather_args)
text_proj = allgather_wgrad(text_proj, gather_args)
if idx is not None:
idx = allgather_wgrad(idx, gather_args)
sim_v2t, sim_t2v = get_sim(vision_proj, text_proj, temp, agg_method=agg_method)
with torch.no_grad():
sim_v2t_targets = self.get_mask(sim_v2t, idx=idx, normalize=True)
sim_t2v_targets = sim_v2t_targets
loss_i2t = -torch.sum(F.log_softmax(sim_v2t, dim=1) * sim_v2t_targets, dim=1).mean()
loss_t2i = -torch.sum(F.log_softmax(sim_t2v, dim=1) * sim_t2v_targets, dim=1).mean()
loss_vtc = (loss_i2t + loss_t2i) / 2
return loss_vtc
def vtm_loss(
self,
multimodal_encoder,
vtm_head: nn.Module,
temp,
vision_embeds: torch.Tensor,
text_embeds: torch.Tensor,
vision_proj: torch.Tensor,
text_proj: torch.Tensor,
text_atts: torch.Tensor,
idx: torch.Tensor,
):
"""video-text matching loss.
Args:
multinomial_encoder (nn.Module): The multimodal_encoder.
vtm_head (nn.Module): The head to produce the video-text matching score.
temp (torch.Tensor): temporature for similarity calculation.
vision_embeds (torch.Tensor): The features of all patches in the video. Shape: [B,T,L,C].
text_embeds (torch.Tensor): The features of all tokens in the text. Shape: [B,L,C].
vision_proj (torch.Tensor): The vision representation. Shape: [B,T,C].
text_proj (torch.Tensor): The text representation. Shape: [B,C].
text_atts (torch.Tensor): The padded mask for text tokens. 0 is padded. Shape: [B,L].
idx (torch.Tensor): The index for each example. Shape: [B,].
Returns: TODO
"""
with torch.no_grad():
sim_v2t, sim_t2v = get_sim(vision_proj, text_proj, temp)
vision_atts = torch.ones(
vision_embeds.size()[:-1], dtype=torch.long, device=vision_embeds.device
)
weights_v2t = F.softmax(sim_v2t + 1e-4, dim=1) # (N, N)
weights_t2v = F.softmax(sim_t2v + 1e-4, dim=1)
mask = self.get_mask(sim_v2t, idx=idx).bool()
weights_v2t.masked_fill_(mask, 0)
weights_t2v.masked_fill_(mask, 0)
weights_v2t = torch.nan_to_num_(weights_v2t, nan=1e-2, posinf=1e-2, neginf=1e-2)
weights_t2v = torch.nan_to_num_(weights_t2v, nan=1e-2, posinf=1e-2, neginf=1e-2)
# select a negative image for each text
if self.vtm_hard_neg:
vision_neg_indices = torch.multinomial(weights_t2v, 1).squeeze() # NOTE bs != 1
txt_neg_indices = torch.multinomial(weights_v2t, 1).squeeze()
else:
vision_neg_indices = self.get_rand_indices(mask, 1).squeeze()
txt_neg_indices = self.get_rand_indices(mask, 1).squeeze()
vision_embeds_neg = vision_embeds[vision_neg_indices] # [B, T*L, c]
text_embeds_neg = text_embeds[txt_neg_indices] # [B, L, d]
text_atts_neg = text_atts[txt_neg_indices]
# concat embeddings
vision_embeds_all = torch.cat([vision_embeds, vision_embeds_neg, vision_embeds], dim=0)
text_embeds_all = torch.cat([text_embeds, text_embeds, text_embeds_neg], dim=0)
vision_atts_all = torch.cat([vision_atts, vision_atts, vision_atts], dim=0)
text_atts_all = torch.cat([text_atts, text_atts, text_atts_neg], dim=0)
output = multimodal_encoder(
encoder_embeds=text_embeds_all,
attention_mask=text_atts_all,
encoder_hidden_states=vision_embeds_all,
encoder_attention_mask=vision_atts_all,
return_dict=True,
mode="fusion",
)
vtm_embeds = output.last_hidden_state[:, 0] # pos (N, d) + neg (2N, d)
vtm_logits = vtm_head(vtm_embeds) # [3*B, 2]
bs = vtm_logits.shape[0] // 3
vtm_labels = vtm_logits.new_ones(3 * bs, dtype=torch.long)
vtm_labels[bs:] = 0
loss_vtm = F.cross_entropy(vtm_logits, vtm_labels)
return loss_vtm
def get_rand_indices(self, mask, k):
"""get rand indices according to mask.
Args:
mask (torch.Tensor): Shape: (N, L) 0 indicates the positions that we can sample, 1 otherwise
k (int): the number indices to sample at each row.
Returns:
The sampled indices. Shape: [N,k].
(N, k) indices
"""
mask = mask.float()
mask = mask - 10000 * mask
mask += torch.randn_like(mask)
_, indices = torch.sort(mask, dim=1, descending=True)
indices = indices[:, :k].contiguous()
return indices
@torch.no_grad()
def get_mask(self, sim, idx=None, normalize=False):
"""
Args:
sim (torch.Tensor): The similarity between videos and texts. shape: (B, B).
idx (torch.Tensor): The index for each video. Shape: [B].
normalize (bool): If true, make row sum equal to 1
"""
if idx is not None:
idx = idx.view(-1, 1)
mask = torch.eq(idx, idx.T).to(sim.dtype)
if normalize:
mask = mask / mask.sum(1, keepdim=True)
else:
mask = torch.zeros_like(sim)
mask.fill_diagonal_(1)
return mask # `1` mark valid/matched location
@lru_cache(maxsize=16)
def get_gather_args(self):
"""obtain the args for all_gather
Returns: dict.
"""
from utils.distributed import get_rank, get_world_size
from utils.easydict import EasyDict
return EasyDict({"world_size": get_world_size(), "rank": get_rank()})
class MLMLoss(nn.Module):
"""masked language modeling loss."""
def __init__(self, masking_prob, tokenizer):
super(MLMLoss, self).__init__()
self.tokenizer = tokenizer
self.masking_prob = masking_prob
def mlm_loss(
self,
text_encoder,
text,
vision_embeds,
vision_atts,
):
input_ids = text.input_ids.clone()
labels = input_ids.clone()
probability_matrix = torch.full(labels.shape, self.masking_prob)
input_ids, labels = self.mask(
input_ids,
text_encoder.config.vocab_size,
input_ids.device,
targets=labels,
probability_matrix=probability_matrix,
)
intermediate_mlm_output = text_encoder.bert(
input_ids,
attention_mask=text.attention_mask,
encoder_hidden_states=vision_embeds,
encoder_attention_mask=vision_atts,
return_dict=True,
mode="text",
)
text_embeds = intermediate_mlm_output.last_hidden_state
mlm_output = text_encoder(
encoder_embeds=text_embeds,
attention_mask=text.attention_mask,
encoder_hidden_states=vision_embeds,
encoder_attention_mask=vision_atts,
return_dict=True,
labels=labels,
soft_labels=None,
mode="fusion",
)
return mlm_output.loss
def simple_mlm_loss(
self,
text_encoder,
text,
text_embeds,
vision_embeds,
vision_atts,
labels
):
mlm_output = text_encoder(
encoder_embeds=text_embeds,
attention_mask=text.attention_mask,
encoder_hidden_states=vision_embeds,
encoder_attention_mask=vision_atts,
return_dict=True,
labels=labels,
soft_labels=None,
mode="fusion",
)
return mlm_output.loss
def mask(
self,
input_ids,
vocab_size,
device,
targets=None,
masked_indices=None,
probability_matrix=None,
):
if masked_indices is None:
masked_indices = torch.bernoulli(probability_matrix).bool()
masked_indices[input_ids == self.tokenizer.pad_token_id] = False
masked_indices[input_ids == self.tokenizer.cls_token_id] = False
"""make deepspeed happy!"""
# _pad_mask = (input_ids == self.tokenizer.pad_token_id).to(masked_indices.device, non_blocking=True) # 0
# # print(_pad_mask.device)
# masked_indices[_pad_mask] = False
# _cls_mask = (input_ids == self.tokenizer.cls_token_id).to(masked_indices.device, non_blocking=True) # 101
# masked_indices[_cls_mask] = False
if targets is not None:
# We only compute loss on masked tokens
targets[~masked_indices] = -100
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = (
torch.bernoulli(torch.full(input_ids.shape, 0.8)).bool() & masked_indices
)
input_ids[indices_replaced] = self.tokenizer.mask_token_id
# 10% of the time, we replace masked input tokens with random word
indices_random = (
torch.bernoulli(torch.full(input_ids.shape, 0.5)).bool()
& masked_indices
& ~indices_replaced
)
random_words = torch.randint(vocab_size, input_ids.shape, dtype=torch.long).to(device)
input_ids[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
if targets is not None:
return input_ids, targets
else:
return input_ids
class UTA_Loss(nn.Module):
"""mask align clip loss."""
def __init__(self, uta_norm_type='l2', uta_loss_type='l2'):
super().__init__()
self.norm_type = uta_norm_type
self.loss_type = uta_loss_type
logger.info(f'Norm type: {uta_norm_type}')
logger.info(f'Loss type: {uta_loss_type}')
if uta_loss_type == 'mse':
self.loss_func = nn.MSELoss()
elif uta_loss_type == 'smooth_l1':
self.loss_func = nn.SmoothL1Loss()
def uta_loss(self, student_output, clip_output):
"""forward to calculate the loss
Args:
student_output (torch.Tensor): The student output. Shape: [K,B,N,C].
clip_output (torch.Tensor): The teacher representation. Shape: [K,B,N,C].
Returns: loss_uta (torch.Tensor): The mask clip alignment loss. Shape: [].
"""
if self.norm_type == 'l2':
student_output = student_output / student_output.norm(dim=-1, keepdim=True)
clip_output = clip_output / clip_output.norm(dim=-1, keepdim=True)
elif self.norm_type == 'none':
pass
else:
raise NotImplementedError
if self.loss_type == 'l2':
loss_uta = (2 - 2 * (student_output * clip_output).sum(dim=-1)).mean()
elif self.loss_type in ['mse', 'smooth_l1']:
loss_uta = self.loss_func(input=student_output, target=clip_output)
else:
raise NotImplementedError
return loss_uta
def uta_vision_loss(self, student_v_output, clip_v_output):
"""forward to calculate the loss
Args:
student_v_output (torch.Tensor): The student output. Shape: [B,T,C].
clip_v_output (torch.Tensor): The teacher representation. Shape: [B,T,C].
Returns: loss_uta (torch.Tensor): The mask clip alignment loss. Shape: [].
"""
if student_v_output.shape[1] != clip_v_output.shape[1]:
student_v_output = student_v_output.mean(1, keepdim=True)
clip_v_output = clip_v_output.mean(1, keepdim=True)
if self.norm_type == 'l2':
student_v_output = student_v_output / student_v_output.norm(dim=-1, keepdim=True)
clip_v_output = clip_v_output / clip_v_output.norm(dim=-1, keepdim=True)
elif self.norm_type == 'none':
pass
else:
raise NotImplementedError
if self.loss_type == 'l2':
loss_uta = (2 - 2 * (student_v_output * clip_v_output).sum(dim=-1)).mean()
elif self.loss_type in ['mse', 'smooth_l1']:
loss_uta = self.loss_func(input=student_v_output, target=clip_v_output)
else:
raise NotImplementedError
return loss_uta
def uta_all_loss(
self,
student_v_output, clip_v_output,
student_t_output, clip_t_output,
):
"""forward to calculate the loss
Args:
student_v_output (torch.Tensor): The student output. Shape: [B,T,C].
clip_v_output (torch.Tensor): The teacher representation. Shape: [B,T,C].
student_t_output (torch.Tensor): The student output. Shape: [B,1,C].
clip_t_output (torch.Tensor): The teacher representation. Shape: [B,1,C].
Returns: loss_uta (torch.Tensor): The mask clip alignment loss. Shape: [].
"""
if student_v_output.shape[1] != clip_v_output.shape[1]:
student_v_output = student_v_output.mean(1, keepdim=True)
clip_v_output = clip_v_output.mean(1, keepdim=True)
if self.norm_type == 'l2':
student_v_output = student_v_output / student_v_output.norm(dim=-1, keepdim=True)
clip_v_output = clip_v_output / clip_v_output.norm(dim=-1, keepdim=True)
student_t_output = student_t_output / student_t_output.norm(dim=-1, keepdim=True)
clip_t_output = clip_t_output / clip_t_output.norm(dim=-1, keepdim=True)
elif self.norm_type == 'none':
pass
else:
raise NotImplementedError
if self.loss_type == 'l2':
loss_uta_v = (2 - 2 * (student_v_output * clip_v_output).sum(dim=-1)).mean()
loss_uta_t = (2 - 2 * (student_t_output * clip_t_output).sum(dim=-1)).mean()
elif self.loss_type in ['mse', 'smooth_l1']:
loss_uta_v = self.loss_func(input=student_v_output, target=clip_v_output)
loss_uta_t = self.loss_func(input=student_t_output, target=clip_t_output)
else:
raise NotImplementedError
return (loss_uta_v + loss_uta_t) / 2.
class new_UTA_Loss(nn.Module):
"""mask align clip loss."""
def __init__(self, distill_final_features=True, clip_loss_ratio=[1., 1.]):
super().__init__()
self.distill_final_features = distill_final_features
self.clip_loss_ratio = clip_loss_ratio
logger.info(f'distill_final_features: {distill_final_features}')
logger.info(f'clip_loss_ratio: {clip_loss_ratio}')
def uta_loss(self, student_output, student_output_final,
targets_clip_middle_vis, targets_clip_final_vis):
"""forward to calculate the loss
Args:
student_output (torch.Tensor): The student output. Shape: [K,B,N,C].
clip_output (torch.Tensor): The teacher representation. Shape: [K,B,N,C].
Returns: loss_uta (torch.Tensor): The mask clip alignment loss. Shape: [].
"""
loss_clip_middle = (2 - 2 * (student_output * targets_clip_middle_vis).sum(dim=-1)).mean()
if self.distill_final_features and self.clip_loss_ratio[1] > 0:
loss_clip_final = (2 - 2 * (student_output_final * targets_clip_final_vis).sum(dim=-1)).mean()
else:
loss_clip_final = torch.zeros(1).type_as(loss_clip_middle).to(loss_clip_middle.device)
loss_uta = loss_clip_middle * self.clip_loss_ratio[0] + loss_clip_final * self.clip_loss_ratio[1]
return loss_uta
|