File size: 11,893 Bytes
2d9a728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import logging

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from scipy import interpolate
from typing import List

from torch import nn

logger = logging.getLogger(__name__)


def load_temp_embed_with_mismatch(temp_embed_old, temp_embed_new, add_zero=True):
    """
    Add/Remove extra temporal_embeddings as needed.
    https://arxiv.org/abs/2104.00650 shows adding zero paddings works.

    temp_embed_old: (1, num_frames_old, 1, d)
    temp_embed_new: (1, num_frames_new, 1, d)
    add_zero: bool, if True, add zero, else, interpolate trained embeddings.
    """
    # TODO zero pad
    num_frms_new = temp_embed_new.shape[1]
    num_frms_old = temp_embed_old.shape[1]
    logger.info(f"Load temporal_embeddings, lengths: {num_frms_old}-->{num_frms_new}")
    if num_frms_new > num_frms_old:
        if add_zero:
            temp_embed_new[
                :, :num_frms_old
            ] = temp_embed_old  # untrained embeddings are zeros.
        else:
            temp_embed_new = interpolate_temporal_pos_embed(temp_embed_old, num_frms_new)
    elif num_frms_new < num_frms_old:
        temp_embed_new = temp_embed_old[:, :num_frms_new]
    else:  # =
        temp_embed_new = temp_embed_old
    return temp_embed_new


def interpolate_temporal_pos_embed(temp_embed_old, num_frames_new):
    """
    temp_embed_old: (1, num_frames_old, 1, d)
    Returns:
        temp_embed_new: (1, num_frames_new, 1, d)
    """
    temp_embed_old = temp_embed_old.squeeze(2).permute(
        0, 2, 1
    )  # (1, d, num_frames_old)
    temp_embed_new = F.interpolate(
        temp_embed_old, num_frames_new, mode="linear"
    )  # (1, d, num_frames_new)
    temp_embed_new = temp_embed_new.permute(0, 2, 1).unsqueeze(
        2
    )  # (1, num_frames_new, 1, d)
    return temp_embed_new


def interpolate_pos_embed(pos_embed_old, pos_embed_new, num_patches_new):
    """
    Args:
        pos_embed_old: (1, L_old, d), pre-trained
        pos_embed_new: (1, L_new, d), newly initialized, to be replaced by interpolated weights
        num_patches_new:
    """
    # interpolate position embedding
    embedding_size = pos_embed_old.shape[-1]
    num_extra_tokens = pos_embed_new.shape[-2] - num_patches_new
    # height (== width) for the checkpoint position embedding
    orig_size = int((pos_embed_old.shape[-2] - num_extra_tokens) ** 0.5)
    # height (== width) for the new position embedding
    new_size = int(num_patches_new ** 0.5)

    if orig_size != new_size:
        # class_token and dist_token are kept unchanged
        # the extra tokens seems always at the beginning of the position embedding
        extra_tokens = pos_embed_old[:, :num_extra_tokens]
        # only the position tokens are interpolated
        pos_tokens = pos_embed_old[:, num_extra_tokens:]
        pos_tokens = pos_tokens.reshape(
            -1, orig_size, orig_size, embedding_size
        ).permute(0, 3, 1, 2)
        pos_tokens = torch.nn.functional.interpolate(
            pos_tokens, size=(new_size, new_size), mode="bicubic", align_corners=False
        )
        pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
        interpolated_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
        logger.info(f"reshape position embedding from {orig_size}**2 to {new_size}**2")
        return interpolated_pos_embed
    else:
        return pos_embed_old


def interpolate_pos_relative_bias_beit(state_dict_old, state_dict_new, patch_shape_new):
    """
    Args:
        state_dict_old: loaded state dict
        state_dict_new: state dict for model with new image size
        patch_shape_new: new model patch_shape
    ref: https://github.com/microsoft/unilm/blob/master/beit/run_class_finetuning.py
    """
    all_keys = list(state_dict_old.keys())
    for key in all_keys:
        if "relative_position_index" in key:
            state_dict_old.pop(key)

        if "relative_position_bias_table" in key:
            rel_pos_bias = state_dict_old[key]
            src_num_pos, num_attn_heads = rel_pos_bias.size()
            dst_num_pos, _ = state_dict_new[key].size()
            dst_patch_shape = patch_shape_new
            if dst_patch_shape[0] != dst_patch_shape[1]:
                raise NotImplementedError()
            num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (
                dst_patch_shape[1] * 2 - 1
            )
            src_size = int((src_num_pos - num_extra_tokens) ** 0.5)
            dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5)
            if src_size != dst_size:
                # logger.info("Position interpolate for %s from %dx%d to %dx%d" % (
                #     key, src_size, src_size, dst_size, dst_size))
                extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
                rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]

                def geometric_progression(a, r, n):
                    return a * (1.0 - r ** n) / (1.0 - r)

                left, right = 1.01, 1.5
                while right - left > 1e-6:
                    q = (left + right) / 2.0
                    gp = geometric_progression(1, q, src_size // 2)
                    if gp > dst_size // 2:
                        right = q
                    else:
                        left = q

                # if q > 1.090307:
                #     q = 1.090307

                dis = []
                cur = 1
                for i in range(src_size // 2):
                    dis.append(cur)
                    cur += q ** (i + 1)

                r_ids = [-_ for _ in reversed(dis)]

                x = r_ids + [0] + dis
                y = r_ids + [0] + dis

                t = dst_size // 2.0
                dx = np.arange(-t, t + 0.1, 1.0)
                dy = np.arange(-t, t + 0.1, 1.0)

                # logger.info("Original positions = %s" % str(x))
                # logger.info("Target positions = %s" % str(dx))

                all_rel_pos_bias = []

                for i in range(num_attn_heads):
                    z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy()
                    f = interpolate.interp2d(x, y, z, kind="cubic")
                    all_rel_pos_bias.append(
                        torch.Tensor(f(dx, dy))
                        .contiguous()
                        .view(-1, 1)
                        .to(rel_pos_bias.device)
                    )

                rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)

                new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)
                state_dict_old[key] = new_rel_pos_bias
    return state_dict_old


def tile(x, dim, n_tile):
    init_dim = x.size(dim)
    repeat_idx = [1] * x.dim()
    repeat_idx[dim] = n_tile
    x = x.repeat(*repeat_idx)
    order_index = torch.LongTensor(
        np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)])
    )
    return torch.index_select(x, dim, order_index.to(x.device))


def mask_logits(target, mask):
    return target * mask + (1 - mask) * (-1e10)


class AllGather(torch.autograd.Function):
    """An autograd function that performs allgather on a tensor."""

    @staticmethod
    def forward(ctx, tensor, args):
        output = [torch.empty_like(tensor) for _ in range(args.world_size)]
        torch.distributed.all_gather(output, tensor)
        ctx.rank = args.rank
        ctx.batch_size = tensor.shape[0]
        return torch.cat(output, dim=0)

    @staticmethod
    def backward(ctx, grad_output):
        return (
            grad_output[ctx.batch_size * ctx.rank : ctx.batch_size * (ctx.rank + 1)],
            None,
        )


allgather_wgrad = AllGather.apply


def tie_encoder_decoder_weights(
    encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, skip_key: str
):
    uninitialized_encoder_weights: List[str] = []
    if decoder.__class__ != encoder.__class__:
        if issubclass(decoder.__class__, encoder.__class__):
            logger.info(
                f"decoder ({decoder.__class__}) and encoder ({encoder.__class__}) are not equal, encoder is decoder's father. In this case make sure that all encoder weights are correctly initialized."
            )
        elif issubclass(encoder.__class__, decoder.__class__):
            logger.info(
                f"decoder ({decoder.__class__}) and encoder ({encoder.__class__}) are not equal, decoder is encoder's father. In this case make sure that all encoder weights are correctly initialized."
            )
        else:
            raise ValueError(f"decoder ({decoder.__class__}) and encoder ({encoder.__class__}) are not equal!!!")

    def tie_encoder_to_decoder_recursively(
        decoder_pointer: nn.Module,
        encoder_pointer: nn.Module,
        module_name: str,
        uninitialized_encoder_weights: List[str],
        skip_key: str,
        depth=0,
    ):
        assert isinstance(decoder_pointer, nn.Module) and isinstance(
            encoder_pointer, nn.Module
        ), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
        if hasattr(decoder_pointer, "weight") and skip_key not in module_name:
            assert hasattr(encoder_pointer, "weight")
            encoder_pointer.weight = decoder_pointer.weight
            if hasattr(decoder_pointer, "bias"):
                assert hasattr(encoder_pointer, "bias")
                encoder_pointer.bias = decoder_pointer.bias
            logger.info(module_name + " is tied")
            return

        encoder_modules = encoder_pointer._modules
        decoder_modules = decoder_pointer._modules
        if len(decoder_modules) > 0:
            assert (
                len(encoder_modules) > 0
            ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"

            all_encoder_weights = set(
                [module_name + "/" + sub_name for sub_name in encoder_modules.keys()]
            )
            encoder_layer_pos = 0
            for name, module in decoder_modules.items():
                if name.isdigit():
                    encoder_name = str(int(name) + encoder_layer_pos)
                    decoder_name = name
                    if not isinstance(
                        decoder_modules[decoder_name],
                        type(encoder_modules[encoder_name]),
                    ) and len(encoder_modules) != len(decoder_modules):
                        # this can happen if the name corresponds to the position in a list module list of layers
                        # in this case the decoder has added a cross-attention that the encoder does not have
                        # thus skip this step and subtract one layer pos from encoder
                        encoder_layer_pos -= 1
                        continue
                elif name not in encoder_modules:
                    continue
                elif depth > 500:
                    raise ValueError(
                        "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
                    )
                else:
                    decoder_name = encoder_name = name
                tie_encoder_to_decoder_recursively(
                    decoder_modules[decoder_name],
                    encoder_modules[encoder_name],
                    module_name + "/" + name,
                    uninitialized_encoder_weights,
                    skip_key,
                    depth=depth + 1,
                )
                all_encoder_weights.remove(module_name + "/" + encoder_name)

            uninitialized_encoder_weights += list(all_encoder_weights)

    # tie weights recursively
    tie_encoder_to_decoder_recursively(
        decoder, encoder, base_model_prefix, uninitialized_encoder_weights, skip_key
    )