File size: 24,854 Bytes
2d9a728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
import datetime
import logging
import time
from os.path import join

import pandas as pd
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import wandb

from dataset.serialize import local_broadcast_process_authkey
from dataset import MetaLoader, MetaLoader_rs2, create_dataset, create_loader, create_sampler, create_stateful_sampler
from models import *
from tasks.retrieval_utils import evaluation_wrapper
from tasks.shared_utils import get_media_types, setup_model
from utils.basic_utils import (MetricLogger, SmoothedValue,
                               remove_files_if_exist, setup_seed)
from utils.config_utils import setup_main
from utils.distributed import get_rank, get_world_size, is_main_process
from utils.logger import log_dict_to_wandb, setup_wandb
try:
    from petrel_client.client import Client
except:
    Client = None
import io
import os
import shutil

logger = logging.getLogger(__name__)

ceph_ckpt_bucket = "shdd:s3://avp_ckpt"


def train(
    model,
    train_loaders,
    optimizer,
    tokenizer,
    epoch,
    global_step,
    device,
    scheduler,
    scaler,
    config,
    skip_num=0
):

    try:
        ceph_ckpt_path = f"{ceph_ckpt_bucket}/{config.output_dir.split('/')[-3]}/{config.output_dir.split('/')[-2]}/{config.output_dir.split('/')[-1]}"
        client_ckpt = Client(conf_path='~/petreloss.conf')
    except Exception as e:
        print(e)
        logger.info("Ceph is not working!!!")


    if config.use_half_precision: 
        if config.get('use_bf16', False):
            cast_dtype = torch.bfloat16
        else:
            cast_dtype = torch.float16
    else:
        cast_dtype = None

    model.train()

    metric_logger = MetricLogger(delimiter="  ")
    metric_logger.add_meter("lr", SmoothedValue(window=100, fmt="{value:.6f}"))
    metric_logger.add_meter("temperature", SmoothedValue(window=100, fmt="{value:.4f}"))
    loss_names = ["loss_" + k for k, v in config.criterion.loss_weight.items() if v != 0]
    
    if config.get("use_raw_text", False): # for cosa
        loss_names = loss_names + ["c_loss_" + k for k, v in config.criterion.loss_weight.items() if v != 0]
    uta_all = config.criterion.get('uta_all', False)

    media_types = get_media_types(train_loaders)

    for name in loss_names:
        for m in media_types:
            metric_logger.add_meter(
                f"{m}-{name}", SmoothedValue(window=100, fmt="{value:.4f}")
            )

    header = f"Train Epoch: [{epoch}]"
    log_freq = config.log_freq

    if config.distributed:
        for d in train_loaders:
            d.sampler.set_epoch(epoch)

    if config.get('use_iter_train', False):
        train_loader = MetaLoader_rs2(name2loader=dict(list(zip(media_types, train_loaders))), skip_num=skip_num)
    else:
        train_loader = MetaLoader(name2loader=dict(list(zip(media_types, train_loaders))))

    model_without_ddp = model.module if config.distributed else model
    iterator = metric_logger.log_every(train_loader, log_freq, header)
    
    begin_step = global_step % len(train_loader)
    logger.info(f"Epoch={epoch}, begin_step={begin_step} save_ckpt_iter={config.get('save_ckpt_iter', None)}")

    for local_step, (media_type, (media, text, idx)) in enumerate(iterator):
        if local_step < begin_step: 
            logger.warn(f"Jump local_step: {local_step} (begin_step={begin_step})!!!")
            metric_logger.update(lr=optimizer.param_groups[0]["lr"])
            continue

        if config.get("save_ckpt_iter", None) is not None: # and not is_iter_resume:
            if local_step != 0 and local_step % config.get("save_ckpt_iter") == 0:
                if hasattr(config, "deepspeed") and config.deepspeed.enable: 
                    tag = f"ckpt_e{epoch:02d}_local{local_step}_global{global_step}"
                    client_state = {'epoch': epoch, 'global_step': global_step, 'local_step': local_step}
                    model.save_checkpoint(config.output_dir, tag=tag, save_latest=False, client_state=client_state)
                    logger.info(f"save ckpt file to local ({config.output_dir}/{tag})!!!")
                elif is_main_process():
                    state_dict = model_without_ddp.state_dict()
                    for k in config.get("no_save_params_prefix", []):
                        kk = [x for x in state_dict.keys() if x.startswith(k)]
                        logger.info(f"Not saving {len(kk)} params with prefix {k}")
                        for kkk in kk:
                            state_dict.pop(kkk)

                    save_obj = {
                        "model": state_dict,
                        "optimizer": optimizer.state_dict(),
                        "scheduler": scheduler.state_dict(),
                        "scaler": scaler.state_dict(),
                        "config": config,
                        "epoch": epoch,
                        "local_step": local_step,
                        "global_step": global_step,
                    }
                    try:
                        with io.BytesIO() as buffer:
                            torch.save(save_obj, buffer)
                            client_ckpt.put(f"{ceph_ckpt_path}/ckpt_{epoch:02d}_local{local_step}_global{global_step}.pth", buffer.getvalue())
                            logger.info(f"Save to ceph ({ceph_ckpt_path}/ckpt_{epoch:02d}_local{local_step}_global{global_step}.pth)!!!")
                    except Exception as e:
                        print(e)
                        torch.save(save_obj, join(config.output_dir, f"ckpt_{epoch:02d}_local{local_step}_global{global_step}.pth"))
                        logger.warn(f"Ceph is not working, save to local ({join(config.output_dir, f'ckpt_{epoch:02d}_local{local_step}_global{global_step}.pth')})!!!")

        if media_type == 'audio_video':
            if type(media[0]) is list:
                assert len(media[0]) == 2
                audio = [media[0][0].to(device, dtype=cast_dtype, non_blocking=True), media[0][1].to(device, non_blocking=True)]
            else:
                audio = media[0].to(device, dtype=cast_dtype, non_blocking=True)
            video = media[1].to(device, dtype=cast_dtype, non_blocking=True)
            media = [audio, video]
        else:
            media = media.to(device, dtype=cast_dtype, non_blocking=True)
        idx = idx.to(device, non_blocking=True)
        if config.get("use_raw_text", False) or config.get("use_cosa", False):
            max_length = config.inputs.max_txt_l[media_type]
        else:
            if type(text) is dict:
                text_input = {}
                for k in text.keys():
                    text_input[k] = tokenizer(
                    text[k],
                    padding="max_length",
                    truncation=True,
                    max_length=config.inputs.max_txt_l[media_type],
                    return_tensors="pt",
                ).to(
                    device) # change from "longest" to "max_length"
            else:
                text_input = tokenizer(
                    text,
                    padding="max_length",
                    truncation=True,
                    max_length=config.inputs.max_txt_l[media_type],
                    return_tensors="pt",
                ).to(
                    device) # change from "longest" to "max_length"
            

        if hasattr(config, "deepspeed") and config.deepspeed.enable:
            loss_dict = model(media, text_input, idx=idx, media_type=media_type)
            loss = sum(loss_dict.values())

            model.backward(loss)
            model.step()

        else: # NOTE We shouldn't use scaler if we only involve bf16, check this!
            with torch.cuda.amp.autocast(enabled=config.use_half_precision, dtype=cast_dtype):
                loss_dict = model(media, text_input, idx=idx, media_type=media_type)
                loss = sum(loss_dict.values())

            if not config.use_half_precision or config.get('use_bf16', False):
                optimizer.zero_grad()
                loss.backward()
                if config.optimizer.max_grad_norm > 0:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), config.optimizer.max_grad_norm)
                    
                optimizer.step()
                scheduler.step()
            else:
                optimizer.zero_grad()
                scaler.scale(loss).backward()
                if config.optimizer.max_grad_norm > 0:
                    scaler.unscale_(optimizer)
                    torch.nn.utils.clip_grad_norm_(model.parameters(), config.optimizer.max_grad_norm)
                scaler.step(optimizer)
                scaler.update()
                scheduler.step()

        # logging
        for name in loss_names:
            if name in loss_dict.keys():
                value = loss_dict[name]
                value = value if isinstance(value, float) else value.item()
                metric_logger.update(**{f"{media_type}-{name}": value})
        metric_logger.update(lr=optimizer.param_groups[0]["lr"])
        metric_logger.update(temperature=model_without_ddp.temp.item())

        if is_main_process() and config.wandb.enable and global_step % log_freq == 0:
            try:
                logs = metric_logger.get_global_avg_dict()
                log_dict_to_wandb(logs, step=global_step, prefix="train/")
            except Exception as e:
                logger.warn("Wandb is not working!!!")
                print(e)
            
        global_step += 1

        if config.debug and global_step % 20 == 0:
            logger.info("debug mode, break training loop")
            break

        if config.debug and global_step % (2 * log_freq + 3) == 0:
            logger.info("debug mode, break training loop")
            break

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    logger.info(f"Averaged stats: {metric_logger.global_avg()}")
    return global_step


def setup_dataloaders(config, mode="pt"):
    # train datasets, create a list of data loaders
    logger.info(f"Creating dataset for {mode} use_iter_train={config.get('use_iter_train', False)}")
    train_datasets = create_dataset(f"{mode}_train", config)
    media_types = get_media_types(train_datasets)

    if config.get('use_iter_train', False):
        if config.distributed:
            batch_size = [config.inputs.batch_size[k] for k in media_types] # batch_size for each GPU
            samplers = create_stateful_sampler(train_datasets, batch_size)
        else:
            raise NotImplementedError
    else:
        if config.distributed:
            num_tasks = get_world_size()
            global_rank = get_rank()
            samplers = create_sampler(
                train_datasets, [True] * len(media_types), num_tasks, global_rank
            )
        else:
            samplers = [None] * len(media_types)

    train_loaders = create_loader(
        train_datasets,
        samplers,
        batch_size=[config.inputs.batch_size[k] for k in media_types],
        num_workers=[config.num_workers] * len(media_types),
        is_trains=[True] * len(media_types),
        collate_fns=[None] * len(media_types),
    )  # [0]

    # test datasets, a mapping from dataset name to data loader
    test_datasets, test_dataset_names = create_dataset(f"{mode}_eval", config)
    test_loaders = create_loader(
        test_datasets,
        [None] * len(test_datasets),
        batch_size=[config.inputs.batch_size_test[d.media_type] for d in test_datasets],
        num_workers=[config.num_workers] * len(test_datasets),
        is_trains=[False] * len(test_datasets),
        collate_fns=[None] * len(test_datasets),
    )
    test_name2loaders = {k: v for k, v in zip(test_dataset_names, test_loaders)}
    return train_loaders, test_name2loaders, media_types


def main(config):
    if config.get('use_flash_sdp', False):
        torch.backends.cuda.enable_flash_sdp(enabled=True)
    elif config.get('use_mem_efficient_sdp', False):
        torch.backends.cuda.enable_mem_efficient_sdp(enabled=True)

    try:
        ceph_ckpt_path = f"{ceph_ckpt_bucket}/{config.output_dir.split('/')[-3]}/{config.output_dir.split('/')[-2]}/{config.output_dir.split('/')[-1]}"
        client_ckpt = Client(conf_path='~/petreloss.conf')
    except Exception as e:
        print(e)
        logger.info("Ceph is not working!!!")
        
    if is_main_process() and config.wandb.enable:
        try:
            run = setup_wandb(config)
            logger.info("Wandb is working!!!")
        except Exception as e:
            logger.warn("Wandb is not working!!!")
            print(e)

    is_pretrain = config.mode == "pt"

    logger.info(f"train_file: {config.train_file}")

    setup_seed(config.seed + get_rank())
    device = torch.device(config.device)

    train_loaders, test_name2loaders, train_media_types = setup_dataloaders(
        config, mode=config.mode
    )
    num_steps_per_epoch = sum(len(d) for d in train_loaders)
    config.scheduler.num_training_steps = num_steps_per_epoch * config.scheduler.epochs
    config.scheduler.num_warmup_steps = num_steps_per_epoch * config.scheduler.warmup_epochs
    # set cudnn.benchmark=True only when input size is fixed
    # https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936/3
    cudnn.benchmark = len(train_media_types) == 1

    print(f"\033[31m CURRENT NODE NAME: {os.environ['SLURMD_NODENAME']} dataloader is OK {datetime.datetime.now().strftime('%Y-%m-%d-%H_%M_%S')}!!! \033[0m")

    find_unused_parameters = config.model.get('find_unused_parameters', False)
    logger.info(f"find_unused_parameters={find_unused_parameters}")

    model_cls = eval(config.model.get('model_cls'))
    (
        model,
        model_without_ddp,
        optimizer,
        scheduler,
        scaler,
        tokenizer,
        start_epoch,
        global_step,
    ) = setup_model(
        config,
        model_cls=model_cls,
        add_decoder=False,
        pretrain=is_pretrain,
        find_unused_parameters=find_unused_parameters,
    )

    if is_main_process() and config.wandb.enable:
        try:
            wandb.watch(model)
        except Exception as e:
            logger.warn("Wandb is not working!!!")
            print(e)

    best = 0
    best_epoch = 0
    if type(config.best_key) is str:
        best_key = [config.best_key, "t2v_r1"]
    elif type(config.best_key) is list and len(config.best_key) == 2:
        best_key = config.best_key
    else:
        raise NotImplementedError(config.best_key)

    best_ckpt_id = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
    logger.info(f"Start training, start_epoch={start_epoch}")
    start_time = time.time()
    start_step = start_epoch * num_steps_per_epoch
    for epoch in range(start_epoch, config.scheduler.epochs):
        if not config.evaluate:
            global_step = train(
                model,
                train_loaders,
                optimizer,
                tokenizer,
                epoch,
                global_step,
                device,
                scheduler,
                scaler,
                config,
                skip_num = global_step - start_step
            )

            if hasattr(config, "deepspeed") and config.deepspeed.enable:
                if config.get("save_latest", False):
                    tag = "ckpt_latest"
                else:
                    tag = f"ckpt_{epoch:02d}"

                client_state = {'epoch': epoch, 'global_step': global_step}
                model.save_checkpoint(config.output_dir, tag=tag, save_latest=False, client_state=client_state)

                logger.info(f"save ckpt file to local ({config.output_dir}/{tag})!!!") 
                if is_main_process() and config.get("delete_ds_optim_states", False):
                    if config.get("save_latest", False):
                        if epoch == (config.scheduler.epochs - 1): # last epoch
                            last_tag = "ckpt_latest"
                            last_ckpt_path = f"{config.output_dir}/{last_tag}"
                            if os.path.exists(last_ckpt_path):
                                logger.info(f"remove optim states in ({config.output_dir}/{last_tag})!!!")
                                for file in os.listdir(last_ckpt_path):
                                    if file.endswith('optim_states.pt'):
                                        os.remove(os.path.join(last_ckpt_path, file))
                    else:
                        last_tag = f"ckpt_{epoch-1:02d}"
                        last_ckpt_path = f"{config.output_dir}/{last_tag}"
                        if os.path.exists(last_ckpt_path):
                            logger.info(f"remove optim states in ({config.output_dir}/{last_tag})!!!")
                            for file in os.listdir(last_ckpt_path):
                                if file.endswith('optim_states.pt'):
                                    os.remove(os.path.join(last_ckpt_path, file))
                        
                        if epoch == (config.scheduler.epochs - 1): # last epoch
                            last_tag = f"ckpt_{epoch:02d}"
                            last_ckpt_path = f"{config.output_dir}/{last_tag}"
                            if os.path.exists(last_ckpt_path):
                                logger.info(f"remove optim states in ({config.output_dir}/{last_tag})!!!")
                                for file in os.listdir(last_ckpt_path):
                                    if file.endswith('optim_states.pt'):
                                        os.remove(os.path.join(last_ckpt_path, file))

            if is_main_process():
                if not (hasattr(config, "deepspeed") and config.deepspeed.enable):
                    state_dict = model_without_ddp.state_dict()
                    for k in config.get("no_save_params_prefix", []):
                        kk = [x for x in state_dict.keys() if x.startswith(k)]
                        logger.info(f"Not saving {len(kk)} params with prefix {k}")
                        for kkk in kk:
                            state_dict.pop(kkk)

                    save_obj = {
                        "model": state_dict,
                        "optimizer": optimizer.state_dict(),
                        "scheduler": scheduler.state_dict(),
                        "scaler": scaler.state_dict(),
                        "config": config,
                        "epoch": epoch,
                        "global_step": global_step,
                    }
                    try:
                        with io.BytesIO() as buffer:
                            torch.save(save_obj, buffer)
                            if config.get("save_latest", False):
                                client_ckpt.put(f"{ceph_ckpt_path}/ckpt_latest.pth", buffer.getvalue())
                                logger.info(f"Save to ceph ({ceph_ckpt_path}/ckpt_latest.pth)!!!")
                            else:
                                client_ckpt.put(f"{ceph_ckpt_path}/ckpt_{epoch:02d}.pth", buffer.getvalue())
                                logger.info(f"Save to ceph ({ceph_ckpt_path}/ckpt_{epoch:02d}.pth)!!!")
                    except Exception as e:
                        print(e)
                        if config.get("save_latest", False):
                            torch.save(save_obj, join(config.output_dir, "ckpt_latest.pth"))
                            logger.warn(f"Ceph is not working, save to local ({join(config.output_dir, 'ckpt_latest.pth')})!!!")
                        else:
                            torch.save(save_obj, join(config.output_dir, f"ckpt_{epoch:02d}.pth"))
                            logger.warn(f"Ceph is not working, save to local ({join(config.output_dir, f'ckpt_{epoch:02d}.pth')})!!!")



        if config.get("jump_evaluate", False) and not config.evaluate:
            logger.warn(f"Jump the evaluation'))!!!")
        else:
            try:
                eval_res = {}
                for test_name, test_loader in test_name2loaders.items():
                    if test_name not in config.test_types:
                        logger.info(
                            f"Skip eval {test_name} split. All test_types {config.test_types}"
                        )
                        continue
                    res = evaluation_wrapper(
                        model_without_ddp, test_loader, tokenizer, device, config, prefix=test_name
                    )
                    eval_res.update(res)

                if is_main_process():
                    # log to wandb
                    if config.wandb.enable:
                        try:
                            for p, v in eval_res.items():
                                log_dict_to_wandb(v, step=global_step, prefix=p)
                        except Exception as e:
                            logger.warn("Wandb is not working!!!")
                            print(e)

                    try:
                        cur_recall = eval_res[best_key[0]][best_key[1]]
                    except Exception as e:
                        logger.warn(e)
                        print(e)
                        # print(eval_res)
                        cur_recall = best - 1

                    eval_res = pd.DataFrame(eval_res)
                    logger.info(f"Epoch {epoch}")
                    logger.info(f"\n{eval_res.transpose().to_string(max_cols=30)}")

                    eval_res.to_json(join(config.output_dir, "eval_res_latest.json"))

                    state_dict = model_without_ddp.state_dict()

                    for k in config.get("no_save_params_prefix", []):
                        kk = [x for x in state_dict.keys() if x.startswith(k)]
                        logger.info(f"Not saving {len(kk)} params with prefix {k}")
                        for kkk in kk:
                            state_dict.pop(kkk)

                    if not config.evaluate and cur_recall > best:
                        if not (hasattr(config, "deepspeed") and config.deepspeed.enable):
                            try:
                                with io.BytesIO() as buffer:
                                    torch.save(save_obj, buffer)
                                    client_ckpt.put(f"{ceph_ckpt_path}/ckpt_best_{best_ckpt_id}.pth", buffer.getvalue())
                                    logger.info(f"Save to ceph ({f'{ceph_ckpt_path}/ckpt_best_{best_ckpt_id}.pth'})!!!")
                            except Exception as e:
                                print(e)
                                torch.save(save_obj, join(config.output_dir, f"ckpt_best_{best_ckpt_id}.pth"))
                                logger.warn(f"Ceph is not working, save to local ({join(config.output_dir, f'ckpt_best_{best_ckpt_id}.pth')})!!!")
                        else:
                            
                            now_ckpt_path = f"{config.output_dir}/{tag}/mp_rank_00_model_states.pt"
                            best_ckpt_path = f"{config.output_dir}/best_mp_rank_00_model_states.pt"

                            if os.path.exists(now_ckpt_path):
                                shutil.copy(now_ckpt_path, best_ckpt_path)
                                logger.info(f"Copy {now_ckpt_path} to {best_ckpt_path}!!!")
                            else:
                                logger.warn(f"Can't find {now_ckpt_path}, there's some wrong!!!")

                        eval_file = "eval_res_best.json"
                        eval_res.to_json(join(config.output_dir, eval_file))
                        best = cur_recall
                        best_epoch = epoch
            except Exception as e:
                logger.warn("Something wrong when eval or save!!!")
                print(e)
                if config.evaluate:
                    raise e


        if config.evaluate:
            break
        
        start_step = global_step

        dist.barrier()

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    logger.info(f"Training time {total_time_str}")
    logger.info(f"best epoch {best_epoch} [best_key {best_key}]")
    logger.info(f"Checkpoints and Logs saved at {config.output_dir}")

    if is_main_process() and config.wandb.enable:
        try:
            run.finish()
        except Exception as e:
            logger.warn("Wandb is not working!!!")
            print(e)


if __name__ == "__main__":
    print(f"\033[31m NODE LIST: {os.environ['SLURM_NODELIST']} \033[0m")
    logger.info(f"NODE LIST: {os.environ['SLURM_NODELIST']}")
    cfg = setup_main()
    local_broadcast_process_authkey()
    main(cfg)