File size: 13,775 Bytes
2d9a728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import datetime
import logging
import time
from os.path import join

import pandas as pd
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import wandb
from torch.utils.data import ConcatDataset

from dataset.serialize import local_broadcast_process_authkey
from dataset import MetaLoader_rs, create_dataset, create_loader, create_sampler, create_stateful_sampler
from models import *
from tasks_clip.retrieval_utils import evaluation_wrapper
from tasks_clip.shared_utils import get_media_types, setup_model
from utils.basic_utils import MetricLogger, SmoothedValue, setup_seed
from utils.config_utils import setup_main
from utils.distributed import get_rank, is_main_process
from utils.logger import log_dict_to_wandb, setup_wandb

logger = logging.getLogger(__name__)


def train(
    model,
    train_loaders,
    optimizer,
    tokenizer,
    epoch,
    global_step,
    device,
    scheduler,
    scaler,
    config,
    data_type,
    skip_num=0
):
    model.train()

    metric_logger = MetricLogger(delimiter="  ")
    metric_logger.add_meter("lr", SmoothedValue(window=100, fmt="{value:.6f}"))
    metric_logger.add_meter("temperature", SmoothedValue(window=100, fmt="{value:.4f}"))
    loss_names = ["loss_" + k for k, v in config.criterion.loss_weight.items() if v != 0]

    media_types = get_media_types(train_loaders)

    for name in loss_names:
        for m in media_types:
            metric_logger.add_meter(
                f"{m}-{name}", SmoothedValue(window=100, fmt="{value:.4f}")
            )

    header = f"Train Epoch: [{epoch}]"
    log_freq = config.log_freq

    if config.distributed:
        for d in train_loaders:
            d.sampler.set_epoch(epoch)
    train_loader = MetaLoader_rs(name2loader=dict(list(zip(media_types, train_loaders))), skip_num=skip_num)

    model_without_ddp = model.module if config.distributed else model
    iterator = metric_logger.log_every(train_loader, log_freq, header)
    for i, (media_type, (image, text, idx)) in enumerate(iterator):
        image = image.to(device, non_blocking=True)
        idx = idx.to(device, non_blocking=True)
        text_input = tokenizer(text).to(device)

        with torch.cuda.amp.autocast(enabled=config.use_half_precision, dtype=data_type):
            loss_dict = model(image, text_input, idx=idx)
            loss = sum(loss_dict.values())
        
        if hasattr(config, "deepspeed") and config.deepspeed.enable:
            model.backward(loss)
            model.step()
        else: 
            if not config.use_half_precision or config.get('use_bf16', True):
                optimizer.zero_grad()
                loss.backward()
                if config.optimizer.max_grad_norm > 0:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), config.optimizer.max_grad_norm)
                optimizer.step()
                scheduler.step()
            else:
                optimizer.zero_grad()
                scaler.scale(loss).backward()
                if config.optimizer.max_grad_norm > 0:
                    scaler.unscale_(optimizer)
                    torch.nn.utils.clip_grad_norm_(model.parameters(), config.optimizer.max_grad_norm)
                scaler.step(optimizer)
                scaler.update()
                scheduler.step()

        # logging
        for name in loss_names:
            value = loss_dict[name]
            value = value if isinstance(value, float) else value.item()
            metric_logger.update(**{f"{media_type}-{name}": value})
        metric_logger.update(lr=optimizer.param_groups[0]["lr"])
        metric_logger.update(temperature=model_without_ddp.temp.item())

        if is_main_process() and config.wandb.enable and global_step % log_freq == 0:
            logs = metric_logger.get_global_avg_dict()
            log_dict_to_wandb(logs, step=global_step, prefix="train/")

        global_step += 1

        if config.debug and global_step % 20 == 0:
            logger.info("debug mode, break training loop")
            break

        if config.debug and global_step % (2 * log_freq + 3) == 0:
            logger.info("debug mode, break training loop")
            break

        if config.get('save_iter', 0) and global_step % config.save_iter == 0:
            if hasattr(config, "deepspeed") and config.deepspeed.enable:
                tag = f"ckpt_iter{global_step:02d}.pth"
                model.save_checkpoint(config.output_dir, tag=tag, save_latest=False, exclude_frozen_parameters=True)
            elif is_main_process():
                state_dict = model_without_ddp.state_dict()
                param_grad_dict = {
                    k: v.requires_grad for (k, v) in model_without_ddp.named_parameters()
                }
                for k in list(state_dict.keys()):
                    if k in param_grad_dict.keys() and not param_grad_dict[k]:
                        # delete parameters that do not require gradient
                        logger.info(f"Not saving {k}")
                        del state_dict[k]
                save_obj = {
                    "model": model_without_ddp.state_dict(),
                    "optimizer": optimizer.state_dict(),
                    "scheduler": scheduler.state_dict(),
                    "scaler": scaler.state_dict(),
                    "config": config,
                    "epoch": epoch,
                    "global_step": global_step,
                }
                torch.save(save_obj, join(config.output_dir, f"ckpt_iter{global_step:02d}.pth"))

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    logger.info(f"Averaged stats: {metric_logger.global_avg()}")
    return global_step


def setup_dataloaders(config, mode="pt"):
    # train datasets, create a list of data loaders
    logger.info(f"Creating dataset for {mode}")
    train_datasets = create_dataset(f"{mode}_train", config)
    media_types = get_media_types(train_datasets)

    if config.distributed:
        batch_size = [config.inputs.batch_size[k] for k in media_types] # batch_size for each GPU
        samplers = create_stateful_sampler(train_datasets, batch_size)
    else:
        raise NotImplementedError

    train_loaders = create_loader(
        train_datasets,
        samplers,
        batch_size=[config.inputs.batch_size[k] for k in media_types],
        num_workers=[config.num_workers] * len(media_types),
        is_trains=[True] * len(media_types),
        collate_fns=[None] * len(media_types),
    )

    # test datasets, a mapping from dataset name to data loader
    test_datasets, test_dataset_names = create_dataset(f"{mode}_eval", config)
    test_loaders = create_loader(
        test_datasets,
        [None] * len(test_datasets),
        batch_size=[config.inputs.batch_size_test[d.media_type] for d in test_datasets],
        num_workers=[config.num_workers] * len(test_datasets),
        is_trains=[False] * len(test_datasets),
        collate_fns=[None] * len(test_datasets),
    )
    test_name2loaders = {k: v for k, v in zip(test_dataset_names, test_loaders)}
    return train_loaders, test_name2loaders, media_types


def main(config):
    if is_main_process() and config.wandb.enable:
        run = setup_wandb(config)

    is_pretrain = config.mode == "pt"

    logger.info(f"train_file: {config.train_file}")

    setup_seed(config.seed + get_rank())
    device = torch.device(config.device)

    train_loaders, test_name2loaders, train_media_types = setup_dataloaders(
        config, mode=config.mode
    )
    num_steps_per_epoch = sum(len(d) for d in train_loaders)

    config.scheduler.num_training_steps = num_steps_per_epoch * config.scheduler.epochs
    config.scheduler.num_warmup_steps = num_steps_per_epoch * config.scheduler.warmup_epochs
    # set cudnn.benchmark=True only when input size is fixed
    # https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936/3
    cudnn.benchmark = len(train_media_types) == 1

    model_cls = eval(config.model.get('model_cls', 'InternVideo2_CLIP'))
    (
        model,
        model_without_ddp,
        optimizer,
        scheduler,
        scaler,
        tokenizer,
        start_epoch,
        global_step,
    ) = setup_model(
        config,
        model_cls=model_cls,
        pretrain=is_pretrain,
        find_unused_parameters=True,
        num_steps_per_epoch=num_steps_per_epoch,
    )
    if is_main_process() and config.wandb.enable:
        wandb.watch(model)

    best = 0
    best_epoch = 0

    if config.get('use_bf16', True):
        data_type = torch.bfloat16
    else:
        data_type = torch.float16

    logger.info("Start training")
    logger.info(f"Epoch: {start_epoch}")
    start_time = time.time()
    start_step = start_epoch * num_steps_per_epoch
    for epoch in range(start_epoch, config.scheduler.epochs):
        if not config.evaluate:
            global_step = train(
                model,
                train_loaders,
                optimizer,
                tokenizer,
                epoch,
                global_step,
                device,
                scheduler,
                scaler,
                config,
                data_type,
                skip_num = global_step - start_step
            )

        # save checkpoint befor evaluation
        # only save those with gradient
        if hasattr(config, "deepspeed") and config.deepspeed.enable:
            if config.get("save_latest", False):
                tag = "ckpt_latest.pth"
            else:
                tag = f"ckpt_{epoch:02d}.pth"
            model.save_checkpoint(config.output_dir, tag=tag, save_latest=False, exclude_frozen_parameters=True)
            
        elif is_main_process():
            state_dict = model_without_ddp.state_dict()
            param_grad_dict = {
                k: v.requires_grad for (k, v) in model_without_ddp.named_parameters()
            }
            for k in list(state_dict.keys()):
                if k in param_grad_dict.keys() and not param_grad_dict[k]:
                    # delete parameters that do not require gradient
                    logger.info(f"Not saving {k}")
                    del state_dict[k]

            save_obj = {
                "model": model_without_ddp.state_dict(),
                "optimizer": optimizer.state_dict(),
                "scheduler": scheduler.state_dict(),
                "scaler": scaler.state_dict(),
                "config": config,
                "epoch": epoch,
                "global_step": global_step,
            }
            if config.get("save_latest", False):
                torch.save(save_obj, join(config.output_dir, "ckpt_latest.pth"))
            else:
                torch.save(save_obj, join(config.output_dir, f"ckpt_{epoch:02d}.pth"))

        # evaluation
        with torch.cuda.amp.autocast(enabled=config.use_half_precision, dtype=data_type):
            eval_res = {}
            for test_name, test_loader in test_name2loaders.items():
                if test_name not in config.test_types:
                    logger.info(
                        f"Skip eval {test_name} split. All test_types {config.test_types}"
                    )
                    continue
                res = evaluation_wrapper(
                    model_without_ddp, test_loader, tokenizer, device, config, data_type=data_type, prefix=test_name
                )
                eval_res.update(res)

        # save the best checkpoint
        if is_main_process():
            # log to wandb
            if config.wandb.enable:
                for p, v in eval_res.items():
                    log_dict_to_wandb(v, step=global_step, prefix=p)

            if config.stop_key is not None and config.stop_key in eval_res:
                cur_r_mean = eval_res[config.stop_key]["r_mean"]
            else:  # None
                cur_r_mean = best + 1  # save the last as the best

            eval_res = pd.DataFrame(eval_res)
            logger.info(f"Epoch {epoch}")
            logger.info(f"\n{eval_res.transpose().to_string(max_cols=30)}")

            eval_res.to_json(join(config.output_dir, "eval_res_latest.json"))

            if not config.evaluate and cur_r_mean > best:
                if not hasattr(config, "deepspeed") or not config.deepspeed.enable:
                    torch.save(save_obj, join(config.output_dir, "ckpt_best.pth"))
                eval_file = "eval_res_best.json"
                eval_res.to_json(join(config.output_dir, eval_file))
                best = cur_r_mean
                best_epoch = epoch
        
        if hasattr(config, "deepspeed") and config.deepspeed.enable:
            r_mean_best = torch.tensor([0.0, 0.0]).to(device)
            if is_main_process():
                r_mean_best[0] = cur_r_mean
                r_mean_best[1] = best
            dist.broadcast(r_mean_best, 0)
            cur_r_mean, best = r_mean_best[0].item(), r_mean_best[1].item()
        
            if not config.evaluate and cur_r_mean > best:
                model.save_checkpoint(config.output_dir, tag="ckpt_best.pth", save_latest=False, exclude_frozen_parameters=True)

        if config.evaluate:
            break
        
        start_step = global_step

        dist.barrier()

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    logger.info(f"Training time {total_time_str}")
    logger.info(f"best epoch {best_epoch} [config.stop_key {config.stop_key}]")
    logger.info(f"Checkpoints and Logs saved at {config.output_dir}")

    if is_main_process() and config.wandb.enable:
        run.finish()


if __name__ == "__main__":
    cfg = setup_main()
    local_broadcast_process_authkey()
    main(cfg)