File size: 5,795 Bytes
2d9a728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import logging
import os
import sys
import json
import torch.distributed as dist
from os.path import dirname, join

from utils.config import Config
from utils.distributed import init_distributed_mode, is_main_process
from utils.logger import setup_logger

logger = logging.getLogger(__name__)


def setup_config():
    """Conbine yaml config and command line config with OmegaConf.
    Also converts types, e.g., `'None'` (str) --> `None` (None)
    """
    config = Config.get_config()
    if config.debug:
        config.wandb.enable = False
    return config


def setup_evaluate_config(config):
    """setup evaluation default settings, e.g., disable wandb"""
    assert config.evaluate
    config.wandb.enable = False
    if config.output_dir is None:
        config.output_dir = join(dirname(config.pretrained_path), "eval")
    return config


def setup_output_dir(output_dir, excludes=["code"]):
    """ensure not overwritting an exisiting/non-empty output dir"""
    if not os.path.exists(output_dir):
        os.makedirs(output_dir, exist_ok=False)
    else:
        existing_dirs_files = os.listdir(output_dir)  # list
        remaining = set(existing_dirs_files) - set(excludes)
        remaining = [e for e in remaining if "slurm" not in e]
        remaining = [e for e in remaining if ".out" not in e]
        # assert len(remaining) == 0, f"remaining dirs or files: {remaining}"
        logger.warn(f"remaining dirs or files: {remaining}")


def setup_deepspeed_zero_config(stage):
    # We currently set ZeRO based on stage:
    if stage == 1:
        return {"stage": 1, "reduce_bucket_size": 5e8}
    if stage == 2:
        return {
            "stage": 2,
            "contiguous_gradients": False,
            "overlap_comm": False,
            "reduce_scatter": True,
            "reduce_bucket_size": 5e8,
            "allgather_bucket_size": 5e8,
            "offload_optimizer": {
                "device": "cpu"
            },
        }
    if stage == 3:
        return {
            "stage": 3,
            "contiguous_gradients": True,
            "stage3_max_live_parameters": 1e9,
            "stage3_max_reuse_distance": 1e9,
            "stage3_prefetch_bucket_size": 1e7,
            "stage3_param_persistence_threshold": 1e5,
            "reduce_bucket_size": 1e7,
            "sub_group_size": 1e9,
            "offload_optimizer": {
                "device": "cpu"
            },
            "offload_param": {
                "device": "cpu"
            }
        }
    
    raise ValueError("Wrong stage for deepspeed {}".format(stage.stage))

def setup_deepspeed_config(config):
    config.deepspeed_config = os.path.join(config.output_dir, "deepspeed_config.json")
    opts = config.optimizer
    logger.info(f'Write deepspeed config to {config.deepspeed_config}')
    if not is_main_process():
        return config
    
    os.makedirs(config.output_dir, exist_ok=True)

    with open(config.deepspeed_config, mode="w") as writer:
        ds_config = {
            "train_batch_size": config.batch_size * dist.get_world_size(),
            "train_micro_batch_size_per_gpu": config.batch_size,
            "steps_per_print": 100,
            "optimizer": {
                "type": "Adam",
                "adam_w_mode": True,
                "params": {
                    "lr": opts.lr,
                    "weight_decay": opts.weight_decay,
                    "bias_correction": True,
                    "betas": [
                        opts.opt_betas[0],
                        opts.opt_betas[1],
                    ],
                    "eps": 1e-8
                }
            }
        }
        if config.deepspeed.stage != 0:
            ds_config["zero_optimization"] = setup_deepspeed_zero_config(config.deepspeed.stage)

        if config.use_half_precision:
            if config.get('use_bf16', False):
                ds_config["bf16"] = {
                "enabled": True
                }
            else:
                ds_config["fp16"] = {
                    "enabled": True,
                    "auto_cast": False,
                    "loss_scale": 0,
                    "initial_scale_power": 16,
                    "loss_scale_window": 1000,
                    "hysteresis": 2,
                    "consecutive_hysteresis": False,
                    "min_loss_scale": 1
                } 
        else:
            assert config.deepspeed.stage == 0, "You must use fp16 or bf16 when using ZERO!!!"
            
        # if config.get("max_grad_norm", -1) > 0:
        #     ds_config.update({"gradient_clipping", config.max_grad_norm})
        if opts.get("max_grad_norm", -1) > 0:
            ds_config["gradient_clipping"] = opts.max_grad_norm

        writer.write(json.dumps(ds_config, indent=2))
    
    return config


def setup_main():
    """
    Setup config, logger, output_dir, etc.
    Shared for pretrain and all downstream tasks.
    """
    # try:
    config = setup_config()
    if hasattr(config, "evaluate") and config.evaluate:
        config = setup_evaluate_config(config)
    init_distributed_mode(config)

    if hasattr(config, "deepspeed") and config.deepspeed.enable:
        config = setup_deepspeed_config(config)
    # except Exception as e:
    #     print(f"\033[31m NODE NAME: {os.environ['SLURMD_NODENAME']} is not OK \033[0m")
    #     logger.info(f"NODE NAME: {os.environ['SLURMD_NODENAME']} is not OK")
    #     raise ValueError
    
    if is_main_process():
        setup_output_dir(config.output_dir, excludes=["code"])
        setup_logger(output=config.output_dir, color=True, name="vindlu")
        logger.info(f"config: {Config.pretty_text(config)}")
        Config.dump(config, os.path.join(config.output_dir, "config.json"))
    
    dist.barrier()

    return config