File size: 9,410 Bytes
2d9a728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import os
import logging

import torch
from einops import rearrange
from torch import nn
import math

# from .criterions import VTC_VTM_Loss
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
from .viclip_vision import clip_joint_l14, clip_joint_b16
from .viclip_text import clip_text_l14, clip_text_b16

logger = logging.getLogger(__name__)


class ViCLIP(nn.Module):
    """docstring for ViCLIP"""

    def __init__(self,  
                 tokenizer=None, 
                 size='l',
                 pretrain=os.path.join(os.path.dirname(os.path.abspath(__file__)), "ViClip-InternVid-10M-FLT.pth"),
                 freeze_text=True):
        super(ViCLIP, self).__init__()
        if tokenizer:
            self.tokenizer = tokenizer
        else:
            self.tokenizer = _Tokenizer()
        self.max_txt_l = 32

        if size.lower() == 'l':
            self.vision_encoder_name = 'vit_l14'
        elif size.lower() == 'b':
            self.vision_encoder_name = 'vit_b16'
        else:
            raise NotImplementedError(f"Size {size} not implemented")
    
        self.vision_encoder_pretrained = False
        self.inputs_image_res = 224
        self.vision_encoder_kernel_size = 1
        self.vision_encoder_center = True
        self.video_input_num_frames = 8
        self.vision_encoder_drop_path_rate = 0.1
        self.vision_encoder_checkpoint_num = 24
        self.is_pretrain = pretrain
        self.vision_width = 1024
        self.text_width = 768 
        self.embed_dim = 768 
        self.masking_prob = 0.9
        
        if size.lower() == 'l':
            self.text_encoder_name = 'vit_l14'
        elif size.lower() == 'b':
            self.text_encoder_name = 'vit_b16'
        else:
            raise NotImplementedError(f"Size {size} not implemented")
        
        self.text_encoder_pretrained = False#'bert-base-uncased'
        self.text_encoder_d_model = 768

        self.text_encoder_vocab_size = 49408
        
        # create modules.
        self.vision_encoder = self.build_vision_encoder()
        self.text_encoder = self.build_text_encoder()

        self.temp = nn.parameter.Parameter(torch.ones([]) * 1 / 100.0)
        self.temp_min = 1 / 100.0

        if pretrain:
            logger.info(f"Load pretrained weights from {pretrain}")
            state_dict = torch.load(pretrain, map_location='cpu')['model']
            self.load_state_dict(state_dict)
        
        # Freeze weights
        if freeze_text:
            self.freeze_text()


    def freeze_text(self):
        """freeze text encoder"""
        for p in self.text_encoder.parameters():
            p.requires_grad = False

    def no_weight_decay(self):
        ret = {"temp"}
        ret.update(
            {"vision_encoder." + k for k in self.vision_encoder.no_weight_decay()}
        )
        ret.update(
            {"text_encoder." + k for k in self.text_encoder.no_weight_decay()}
        )

        return ret

    def forward(self, image, text, raw_text, idx, log_generation=None, return_sims=False):
        """forward and calculate loss.

        Args:
            image (torch.Tensor): The input images. Shape: [B,T,C,H,W].
            text (dict): TODO
            idx (torch.Tensor): TODO

        Returns: TODO

        """
        self.clip_contrastive_temperature()

        vision_embeds = self.encode_vision(image)
        text_embeds = self.encode_text(raw_text)
        if return_sims:
            sims = torch.nn.functional.normalize(vision_embeds, dim=-1) @ \
                  torch.nn.functional.normalize(text_embeds, dim=-1).transpose(0, 1)
            return sims

        # calculate loss

        ## VTC loss
        loss_vtc = self.clip_loss.vtc_loss(
            vision_embeds, text_embeds, idx, self.temp, all_gather=True
        )

        return dict(
            loss_vtc=loss_vtc,
        )

    def encode_vision(self, image, test=False):
        """encode image / videos as features.

        Args:
            image (torch.Tensor): The input images.
            test (bool): Whether testing.

        Returns: tuple.
            - vision_embeds (torch.Tensor): The features of all patches. Shape: [B,T,L,C].
            - pooled_vision_embeds (torch.Tensor): The pooled features. Shape: [B,T,C].

        """
        if image.ndim == 5:
            image = image.permute(0, 2, 1, 3, 4).contiguous()
        else:
            image = image.unsqueeze(2)

        if not test and self.masking_prob > 0.0:
            return self.vision_encoder(
                image, masking_prob=self.masking_prob
            )

        return self.vision_encoder(image)

    def encode_text(self, text):
        """encode text.
        Args:
            text (dict): The output of huggingface's `PreTrainedTokenizer`. contains keys:
                - input_ids (torch.Tensor): Token ids to be fed to a model. Shape: [B,L].
                - attention_mask (torch.Tensor): The mask indicate padded tokens. Shape: [B,L]. 0 is padded token.
                - other keys refer to "https://huggingface.co/docs/transformers/v4.21.2/en/main_classes/tokenizer#transformers.PreTrainedTokenizer.__call__".
        Returns: tuple.
            - text_embeds (torch.Tensor): The features of all tokens. Shape: [B,L,C].
            - pooled_text_embeds (torch.Tensor): The pooled features. Shape: [B,C].

        """
        device = next(self.text_encoder.parameters()).device
        text = self.text_encoder.tokenize(
            text, context_length=self.max_txt_l
        ).to(device)
        text_embeds = self.text_encoder(text)
        return text_embeds

    @torch.no_grad()
    def clip_contrastive_temperature(self, min_val=0.001, max_val=0.5):
        """Seems only used during pre-training"""
        self.temp.clamp_(min=self.temp_min)

    def build_vision_encoder(self):
        """build vision encoder
        Returns: (vision_encoder, vision_layernorm). Each is a `nn.Module`.

        """
        encoder_name = self.vision_encoder_name
        if encoder_name == "vit_l14":
            vision_encoder = clip_joint_l14(
                pretrained=self.vision_encoder_pretrained,
                input_resolution=self.inputs_image_res,
                kernel_size=self.vision_encoder_kernel_size,
                center=self.vision_encoder_center,
                num_frames=self.video_input_num_frames,
                drop_path=self.vision_encoder_drop_path_rate,
                checkpoint_num=self.vision_encoder_checkpoint_num,
            )
        elif encoder_name == "vit_b16":
            vision_encoder = clip_joint_b16(
                pretrained=self.vision_encoder_pretrained,
                input_resolution=self.inputs_image_res,
                kernel_size=self.vision_encoder_kernel_size,
                center=self.vision_encoder_center,
                num_frames=self.video_input_num_frames,
                drop_path=self.vision_encoder_drop_path_rate,
                checkpoint_num=self.vision_encoder_checkpoint_num,
            )
        else:
            raise NotImplementedError(f"Not implemented: {encoder_name}")
            
        return vision_encoder

    def build_text_encoder(self):
        """build text_encoder and possiblly video-to-text multimodal fusion encoder.
        Returns: nn.Module. The text encoder

        """
        encoder_name = self.text_encoder_name
        
        if encoder_name == "vit_l14":
            text_encoder = clip_text_l14(
                pretrained=self.text_encoder_pretrained,
                context_length=self.max_txt_l,
                vocab_size=self.text_encoder_vocab_size,
                checkpoint_num=0,
            )
        elif encoder_name == "vit_b16":
            text_encoder = clip_text_b16(
                pretrained=self.text_encoder_pretrained,
                context_length=self.max_txt_l,
                vocab_size=self.text_encoder_vocab_size,
                checkpoint_num=0,
            )
        else:
            raise NotImplementedError(f"Not implemented: {encoder_name}")

        return text_encoder

    def get_text_encoder(self):
        """get text encoder, used for text and cross-modal encoding"""
        encoder = self.text_encoder
        return encoder.bert if hasattr(encoder, "bert") else encoder
    
    def get_text_features(self, input_text, tokenizer, text_feature_dict={}):
        if input_text in text_feature_dict:
            return text_feature_dict[input_text]
        text_template= f"{input_text}"
        with torch.no_grad():
            # text_token = tokenizer.encode(text_template).cuda()
            text_features = self.encode_text(text_template).float()
            text_features /= text_features.norm(dim=-1, keepdim=True)      
            text_feature_dict[input_text] = text_features
        return text_features

    def get_vid_features(self, input_frames):
        with torch.no_grad():
            clip_feat = self.encode_vision(input_frames,test=True).float()
            clip_feat /= clip_feat.norm(dim=-1, keepdim=True)    
        return clip_feat

    def get_predict_label(self, clip_feature, text_feats_tensor, top=5):
        label_probs = (100.0 * clip_feature @ text_feats_tensor.T).softmax(dim=-1)
        top_probs, top_labels = label_probs.cpu().topk(top, dim=-1)
        return top_probs, top_labels

    
if __name__ =="__main__":
    tokenizer = _Tokenizer()