Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,290 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
# Description: This file contains the code for serializing the dataset.
# From https://github.com/ppwwyyxx/RAM-multiprocess-dataloader/blob/795868a37446d61412b9a58dbb1b7c76e75d39c4/serialize.py
# Copyright (c) Facebook, Inc. and its affiliates.
"""
List serialization code adopted from
https://github.com/facebookresearch/detectron2/blob/main/detectron2/data/common.py
"""
import multiprocessing as mp
from typing import List, Any, Optional
import pickle
import numpy as np
import torch
import torch.distributed as dist
import functools
import os
from datetime import timedelta
def get_world_size() -> int:
if not dist.is_available():
return 1
if not dist.is_initialized():
return 1
return dist.get_world_size()
def get_rank() -> int:
if not dist.is_available():
return 0
if not dist.is_initialized():
return 0
return dist.get_rank()
def get_local_rank() -> int:
if not dist.is_available():
return 0
if not dist.is_initialized():
return 0
# this is not guaranteed to be set
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
return int(os.environ['LOCAL_RANK'])
elif 'SLURM_PROCID' in os.environ:
return int(os.environ['SLURM_LOCALID'])
else:
raise RuntimeError("Unable to get local rank")
def get_local_size() -> int:
return torch.cuda.device_count()
@functools.lru_cache()
def _get_global_gloo_group():
"""
Return a process group based on gloo backend, containing all the ranks
The result is cached.
"""
if dist.get_backend() == "nccl":
return dist.new_group(backend="gloo", timeout=timedelta(minutes=60))
else:
return dist.group.WORLD
def all_gather(data, group=None):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors).
Args:
data: any picklable object
group: a torch process group. By default, will use a group which
contains all ranks on gloo backend.
Returns:
list[data]: list of data gathered from each rank
"""
if get_world_size() == 1:
return [data]
if group is None:
group = (
_get_global_gloo_group()
) # use CPU group by default, to reduce GPU RAM usage.
world_size = dist.get_world_size(group)
if world_size == 1:
return [data]
output = [None for _ in range(world_size)]
dist.all_gather_object(output, data, group=group)
return output
class NumpySerializedList:
def __init__(self, lst: list):
def _serialize(data):
buffer = pickle.dumps(data, protocol=-1)
return np.frombuffer(buffer, dtype=np.uint8)
print(
"Serializing {} elements to byte tensors and concatenating them all ...".format(
len(lst)
)
)
self._lst = [_serialize(x) for x in lst]
self._addr = np.asarray([len(x) for x in self._lst], dtype=np.int64)
self._addr = np.cumsum(self._addr)
self._lst = np.concatenate(self._lst)
print("Serialized dataset takes {:.2f} MiB".format(len(self._lst) / 1024**2))
def __len__(self):
return len(self._addr)
def __getitem__(self, idx):
start_addr = 0 if idx == 0 else self._addr[idx - 1].item()
end_addr = self._addr[idx].item()
bytes = memoryview(self._lst[start_addr:end_addr])
return pickle.loads(bytes)
class TorchSerializedList(NumpySerializedList):
def __init__(self, lst: list):
super().__init__(lst)
self._addr = torch.from_numpy(self._addr)
self._lst = torch.from_numpy(self._lst)
def __getitem__(self, idx):
start_addr = 0 if idx == 0 else self._addr[idx - 1].item()
end_addr = self._addr[idx].item()
bytes = memoryview(self._lst[start_addr:end_addr].numpy())
return pickle.loads(bytes)
def local_scatter(array: Optional[List[Any]]):
"""
Scatter an array from local leader to all local workers.
The i-th local worker gets array[i].
Args:
array: Array with same size of #local workers.
"""
if get_local_size() <= 1:
# Just one worker. Do nothing.
return array[0]
if get_local_rank() == 0:
assert len(array) == get_local_size()
all_gather(array)
else:
all_data = all_gather(None)
array = all_data[get_rank() - get_local_rank()]
return array[get_local_rank()]
# NOTE: https://github.com/facebookresearch/mobile-vision/pull/120
# has another implementation that does not use tensors.
class TorchShmSerializedList(TorchSerializedList):
def __init__(self, lst: list):
if get_local_rank() == 0:
super().__init__(lst)
if get_local_rank() == 0:
# Move data to shared memory, obtain a handle to send to each local worker.
# This is cheap because a tensor will only be moved to shared memory once.
handles = [None] + [
bytes(mp.reduction.ForkingPickler.dumps((self._addr, self._lst)))
for _ in range(get_local_size() - 1)
]
else:
handles = None
# Each worker receives the handle from local leader.
handle = local_scatter(handles)
if get_local_rank() > 0:
# Materialize the tensor from shared memory.
self._addr, self._lst = mp.reduction.ForkingPickler.loads(handle)
print(
f"Worker {get_rank()} obtains a dataset of length="
f"{len(self)} from its local leader."
)
# From https://github.com/ppwwyyxx/RAM-multiprocess-dataloader/issues/5#issuecomment-1510676170
def local_broadcast_process_authkey():
if int(os.environ['LOCAL_WORLD_SIZE']) == 1:
return
local_rank = int(os.environ['LOCAL_RANK'])
authkey = bytes(mp.current_process().authkey)
all_keys = all_gather(authkey)
local_leader_key = all_keys[get_rank() - local_rank]
if authkey != local_leader_key:
print("Process authkey is different from the key of local leader. This might happen when "
"workers are launched independently.")
print("Overwriting local authkey ...")
mp.current_process().authkey = local_leader_key
|