Spaces:
Sleeping
Sleeping
File size: 10,495 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import logging
import torch
from torch import nn
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from torchvision.transforms import InterpolationMode
from .backbones.internvideo2 import InternVideo2, LLaMA, Tokenizer
from .criterions import VTC_VTM_Loss
logger = logging.getLogger(__name__)
class InternVideo2_CLIP(nn.Module):
def __init__(self, config, tokenizer=None, is_pretrain=True):
super().__init__()
self.config = config
self.tokenizer = tokenizer
self.is_pretrain = is_pretrain
# create modules.
if tokenizer is None:
self.tokenizer = Tokenizer(config.model.tokenizer_path)
self.vision_encoder = self.build_vision_encoder()
self.text_encoder = self.build_text_encoder()
# adopt 1 / 100. as in ViCLIP
self.temp = nn.parameter.Parameter(torch.ones([]) * config.model.temp)
self.temp_min = config.model.temp_min
# freeze model
if self.config.model.freeze_vision:
for name, p in self.vision_encoder.named_parameters():
if self.config.model.open_vision_clip_projector and name.startswith('clip_projector'):
logger.info(f"Unfreeze {name}")
else:
logger.info(f"Freeze {name}")
p.requires_grad = False
if self.config.model.freeze_text:
for name, p in self.text_encoder.named_parameters():
if self.config.model.open_text_projection and name.startswith('text_projection'):
logger.info(f"Unfreeze {name}")
elif self.config.model.open_text_lora and 'lora' in name:
logger.info(f"Unfreeze {name}")
else:
logger.info(f"Freeze {name}")
p.requires_grad = False
img_size = self.config.model.vision_encoder.img_size
self.transform = transforms.Compose(
[
transforms.Resize(
(img_size, img_size),
interpolation=InterpolationMode.BICUBIC,
),
transforms.Lambda(lambda x: x.float().div(255.0)),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
]
)
# load pretrained models
self.load_checkpoint(
config.model.vision_ckpt_path, config.model.text_ckpt_path,
config.model.get("extra_ckpt_path", None)
)
# criterions
self.clip_loss = VTC_VTM_Loss(False)
def no_weight_decay(self):
ret = {"temp"}
ret.update(
{"vision_encoder." + k for k in self.vision_encoder.no_weight_decay()}
)
# no weight decay for LLM if training
ret.update(
{"text_encoder." + k for k, _ in self.text_encoder.named_parameters()}
)
return ret
@torch.no_grad()
def clip_contrastive_temperature(self):
"""Seems only used during pre-training"""
self.temp.clamp_(min=self.temp_min)
def forward(self, image, text, idx):
"""forward and calculate loss.
Args:
image (torch.Tensor): The input images. Shape: [B,T,C,H,W].
text (dict): TODO
idx (torch.Tensor): TODO
Returns: TODO
"""
self.clip_contrastive_temperature()
vision_embeds = self.encode_vision(image)
text_embeds = self.encode_text(text)
# VTC loss
loss_vtc = self.clip_loss.vtc_loss(
vision_embeds, text_embeds, idx, self.temp, all_gather=True
)
return dict(
loss_vtc=loss_vtc,
)
def encode_vision(self, image, test=False):
"""encode image / videos as features.
Args:
image (torch.Tensor): The input images.
test (bool): Whether testing.
Returns: tuple.
- vision_embeds (torch.Tensor): The features of all patches. Shape: [B,C].
"""
T = image.shape[1]
use_image = True if T == 1 else False
image = image.permute(0, 2, 1, 3, 4) # [B,T,C,H,W] -> [B,C,T,H,W]
vision_embeds = self.vision_encoder(image, use_image=use_image)
return vision_embeds
def encode_text(self, text):
"""encode text.
Args:
text (dict): The output of huggingface's `PreTrainedTokenizer`. contains keys:
- input_ids (torch.Tensor): Token ids to be fed to a model. Shape: [B,L].
- attention_mask (torch.Tensor): The mask indicate padded tokens. Shape: [B,L]. 0 is padded token.
- other keys refer to "https://huggingface.co/docs/transformers/v4.21.2/en/main_classes/tokenizer#transformers.PreTrainedTokenizer.__call__".
Returns: tuple.
- text_embeds (torch.Tensor): The features of all tokens. Shape: [B,C].
"""
text_embeds = self.text_encoder(text)
return text_embeds
def build_vision_encoder(self):
"""build vision encoder
Returns: (vision_encoder, vision_layernorm). Each is a `nn.Module`.
"""
vision_encoder = InternVideo2(
in_chans=self.config.model.vision_encoder.in_chans,
patch_size=self.config.model.vision_encoder.patch_size,
img_size=self.config.model.vision_encoder.img_size,
qkv_bias=self.config.model.vision_encoder.qkv_bias,
drop_path_rate=self.config.model.vision_encoder.drop_path_rate,
head_drop_path_rate=self.config.model.vision_encoder.head_drop_path_rate,
embed_dim=self.config.model.vision_encoder.embed_dim,
num_heads=self.config.model.vision_encoder.num_heads,
mlp_ratio=self.config.model.vision_encoder.mlp_ratio,
init_values=self.config.model.vision_encoder.init_values,
qk_normalization=self.config.model.vision_encoder.qk_normalization,
depth=self.config.model.vision_encoder.depth,
use_flash_attn=self.config.model.vision_encoder.use_flash_attn,
use_fused_rmsnorm=self.config.model.vision_encoder.use_fused_rmsnorm,
use_fused_mlp=self.config.model.vision_encoder.use_fused_mlp,
fused_mlp_heuristic=self.config.model.vision_encoder.fused_mlp_heuristic,
attn_pool_num_heads=self.config.model.vision_encoder.attn_pool_num_heads,
clip_embed_dim=self.config.model.vision_encoder.clip_embed_dim,
layerscale_no_force_fp32=self.config.model.vision_encoder.layerscale_no_force_fp32,
num_frames=self.config.model.vision_encoder.num_frames,
tubelet_size=self.config.model.vision_encoder.tubelet_size,
sep_pos_embed=self.config.model.vision_encoder.sep_pos_embed,
use_checkpoint=self.config.model.vision_encoder.use_checkpoint,
checkpoint_num=self.config.model.vision_encoder.checkpoint_num,
)
return vision_encoder
def build_text_encoder(self):
"""build text_encoder and possiblly video-to-text multimodal fusion encoder.
Returns: nn.Module. The text encoder
"""
text_encoder = LLaMA(
use_flash_attn=self.config.model.text_encoder.use_flash_attn,
transformer_width=self.config.model.text_encoder.transformer_width,
llama_path=self.config.model.text_encoder.llama_path,
use_lora=self.config.model.text_encoder.use_lora,
)
return text_encoder
def load_checkpoint(self, vision_ckpt_path=None, text_ckpt_path=None, extra_ckpt_path=None):
assert vision_ckpt_path is not None, "No vision_encoder checkpoint"
assert text_ckpt_path is not None, "No text_encoder checkpoint"
new_ckpt = {}
# load vision_encoder
logger.info(f"Load vision_encoder checkpoint from {vision_ckpt_path}")
vision_ckpt = torch.load(vision_ckpt_path, map_location='cpu')
if 'module' in vision_ckpt.keys():
vision_ckpt = vision_ckpt['module']
elif 'model' in vision_ckpt.keys():
vision_ckpt = vision_ckpt['model']
if self.config.model.get('load_vision_ckpt_from_internvideo2_stage2', False):
from .backbones.internvideo2.pos_embed import interpolate_pos_embed
orig_t_size = self.config.model.get('vision_ckpt_t_size', 4)
interpolate_pos_embed(vision_ckpt, self.vision_encoder, orig_t_size=orig_t_size) # 4 for InternVideo2 stage2
for k, v in vision_ckpt.items():
if k.startswith('vision_encoder.'):
if 'clip_decoder' in k or 'final_clip_decoder' in k:
continue
elif 'clip_pos_embed' in k or 'clip_img_pos_embed' in k or 'img_pos_embed' in k :
continue
else:
new_ckpt[k] = v
else:
continue
else:
for k, v in vision_ckpt.items():
if k.startswith('clip_decoder.') or k.startswith('mae_decoder.') or k.startswith('final_clip_decoder.'):
continue
elif k in ['clip_pos_embed', 'mae_pos_embed']:
continue
else:
new_k = 'vision_encoder.' + k
new_ckpt[new_k] = v
# load text_encoder
logger.info(f"Load text_encoder checkpoint from {text_ckpt_path}")
test_ckpt = torch.load(text_ckpt_path, map_location='cpu')
if 'module' in test_ckpt.keys():
test_ckpt = test_ckpt['module']
for k, v in test_ckpt.items():
if k.startswith('transformer.') or k == 'text_projection':
new_k = "text_encoder." + k
else:
continue
new_ckpt[new_k] = v
# load extra checkpoint
# often when post-pretrain after previous pretraining, thus the keys are same
if extra_ckpt_path is not None:
logger.info(f"Load extra checkpoint from {extra_ckpt_path}")
extra_ckpt = torch.load(extra_ckpt_path, map_location='cpu')
if 'module' in extra_ckpt.keys():
extra_ckpt = extra_ckpt['module']
for k, v in extra_ckpt.items():
new_ckpt[k] = v
msg = self.load_state_dict(new_ckpt, strict=False)
logger.info(msg)
|