File size: 9,749 Bytes
2d9a728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import copy
import logging
import os
import os.path as osp
import io

try:
    import deepspeed
except Exception as e:
    print(e)
    print("deepspeed is not installed!!!")
    
from os.path import join


try:
    from petrel_client.client import Client
except:
    Client = None

import torch
from torch.utils.data import ConcatDataset, DataLoader

from dataset.resample_concat_dataset import ResampleConcatDataset
from models.backbones.internvideo2.pos_embed import interpolate_pos_embed_internvideo2_new
from models.backbones.bert.tokenization_bert import BertTokenizer
from utils.optimizer import create_optimizer
from utils.scheduler import create_scheduler
from utils.distributed import get_rank

logger = logging.getLogger(__name__)


def get_media_types(datasources):
    """get the media types for for all the dataloaders.

    Args:
        datasources (List): List of dataloaders or datasets.

    Returns: List. The media_types.

    """
    if isinstance(datasources[0], DataLoader):
        datasets = [dataloader.dataset for dataloader in datasources]
    else:
        datasets = datasources
    media_types = [
        dataset.datasets[0].media_type
        if isinstance(dataset, ConcatDataset) or isinstance(dataset, ResampleConcatDataset)
        else dataset.media_type
        for dataset in datasets
    ]

    return media_types


def setup_model(
    config, model_cls, add_decoder=False, pretrain=False, find_unused_parameters=False
):
    logger.info("Creating model")
    config = copy.deepcopy(config)

    if "bert" in config.model.text_encoder.name:
        logger.info(f"Using BertTokenizer: {config.model.text_encoder.pretrained}!")
        tokenizer = BertTokenizer.from_pretrained(config.model.text_encoder.pretrained, local_files_only=True)
        model = model_cls(config=config, tokenizer=tokenizer, is_pretrain=pretrain)
    else:
        model = model_cls(config=config, is_pretrain=pretrain)
        tokenizer = model.tokenizer
        logger.info(f"Using model.tokenizer: {tokenizer}!")

    
    if config.get('compile_model', False):
        torch.set_float32_matmul_precision('high')
        model = torch.compile(model)

    model = model.to(torch.device(config.device))
    model_without_ddp = model


    if hasattr(config, "deepspeed") and config.deepspeed.enable:
        # We move this to the back
        optimizer_params = create_optimizer(config.optimizer, model, return_group=True)
        scheduler = None
        scaler = None
    else:
        if config.distributed:
            model = torch.nn.parallel.DistributedDataParallel(
                model,
                device_ids=[config.gpu],
                find_unused_parameters=find_unused_parameters,  # `False` for image-only task
            )

        optimizer = create_optimizer(config.optimizer, model)
        scaler = torch.cuda.amp.GradScaler(enabled=config.use_half_precision)  # This is never used actually if we fixed bf16
        scheduler = create_scheduler(config.scheduler, optimizer)


    start_epoch = 0
    global_step = 0

    # auto resume the latest checkpoint
    if config.get("auto_resume", False):
        logger.info("Auto resuming")
        model_latest = join(config.output_dir, "ckpt_latest.pth")
        model_best = join(config.output_dir, "ckpt_best.pth")
        large_num = -1
        for p in os.listdir(config.output_dir):
            if 'ckpt' in p:
                num = p.split('_')[1].split('.')[0]
                if str.isnumeric(num):
                    if int(num) > large_num:
                        large_num = int(num)
        if large_num != -1:
            model_latest = join(config.output_dir, f"ckpt_{large_num:02d}.pth")
        if osp.isfile(model_latest):
            config.pretrained_path = model_latest
            config.resume = True
        elif osp.isfile(model_best):
            config.pretrained_path = model_best
            config.resume = True
        else:
            logger.info(f"Not found checkpoint in {config.output_dir}")


    if (config.pretrained_path.strip() and (osp.isfile(config.pretrained_path)) or "s3://" in config.pretrained_path):
        if Client is not None:
            client = Client()
            with io.BytesIO(client.get(config.pretrained_path)) as buffer:
                checkpoint = torch.load(buffer, map_location="cpu")
        else:
            checkpoint = torch.load(config.pretrained_path, map_location="cpu")
        logger.info(f"Loading checkpoint from {config.pretrained_path}")
        try:
            if "model" in checkpoint.keys():
                state_dict = checkpoint["model"]
            else:
                state_dict = checkpoint["module"] # This is a deepspeed stage 1 model
        except:  
            state_dict = checkpoint

        if config.get('origin_num_frames', None) is not None:
            logger.info(f"interpolate_pos_embed_internvideo2 (origin_num_frames={config.origin_num_frames})!!!")
            a = len(state_dict)
            interpolate_pos_embed_internvideo2_new(state_dict, model_without_ddp.vision_encoder, orig_t_size=config.origin_num_frames)
            assert a == len(state_dict), state_dict.keys()

        if config.resume:
            assert not (hasattr(config, "deepspeed") and config.deepspeed.enable), "Deepspeed should run here!!!"
            optimizer.load_state_dict(checkpoint["optimizer"])
            scheduler.load_state_dict(checkpoint["scheduler"])
            scaler.load_state_dict(checkpoint["scaler"])
            if 'local_step' in checkpoint.keys():
                start_epoch = checkpoint['epoch']
            else:
                start_epoch = checkpoint["epoch"] + 1
            global_step = checkpoint["global_step"]

        elif not pretrain:  # downstream init from pretrained ckpt 


            if not config.evaluate or config.get("zero_shot", False):  # finetuning from a pretrained weights.
                if add_decoder:
                    logger.info("Init new decoder with encoder!!!")
                for key in list(state_dict.keys()):
                    if "text_encoder.bert" in key:
                        encoder_key = key.replace("bert.", "") 
                        state_dict[encoder_key] = state_dict[key]
                        if not add_decoder:
                            del state_dict[key]

                    # init text decoder as multimodal encoder (last 6 layers of model.text_encoder)
                    # only for generation tasks like VQA
                    if add_decoder and "text_encoder.bert" in key:
                        if "layer" in key:
                            encoder_keys = key.split(".")
                            layer_num = int(encoder_keys[4])
                            if layer_num < config.model.text_encoder.fusion_layer:
                                del state_dict[key]
                                continue
                            else:
                                decoder_layer_num = layer_num - config.model.text_encoder.fusion_layer
                                encoder_keys[4] = str(decoder_layer_num)
                                encoder_key = ".".join(encoder_keys)
                        else:
                            encoder_key = key
                        decoder_key = encoder_key.replace("text_encoder", "text_decoder")
                        state_dict[decoder_key] = state_dict[key]
                        del state_dict[key]


        msg = model_without_ddp.load_state_dict(state_dict, strict=False)
        logger.info(msg)
        logger.info(f"Loaded checkpoint from {config.pretrained_path}")
    else:
        if not config.resume:
            assert not config.evaluate, "No available pretrained checkpoint provided!!!"
            assert config.pretrained_path == "", config.pretrained_path
            logger.warning("No available pretrained checkpoint provided, training from scratch.")


    if hasattr(config, "deepspeed") and config.deepspeed.enable:
        logger.info(f'Use deepspeed to initialize model (resume={config.resume}) !!!')
        model = model_without_ddp

        model, optimizer, _, _ = deepspeed.initialize(
            args=config, model=model, model_parameters=optimizer_params, dist_init_required=not config.distributed,
            lr_scheduler=lambda opt: create_scheduler(config.scheduler, opt)
        )


        if config.resume:
            logger.info(f'Resume deepspeed ckpt from {config.output_dir}, tag={config.pretrained_path}, load_module_strict={config.get("load_module_strict", True)}, load_lr_scheduler_states={config.get("load_lr_scheduler_states", True)}!!!')
            _, client_states = model.load_checkpoint(config.output_dir, tag=config.pretrained_path,  load_module_strict=config.get("load_module_strict", True), load_lr_scheduler_states=config.get("load_lr_scheduler_states", True))
            logger.info(client_states)
            if 'local_step' in client_states.keys():
                start_epoch = client_states['epoch']
            else:
                start_epoch = client_states['epoch'] + 1
            global_step = client_states['global_step']


    logger.info(f"Cuda memory after create model: {torch.cuda.memory_allocated() // 1024**2}M, Max mem: {torch.cuda.max_memory_allocated() // 1024**2}M start_epoch={start_epoch}, global_step={global_step}")
    print(f"\033[31m Cuda memory after create model: {torch.cuda.memory_allocated() // 1024**2}M, Max mem: {torch.cuda.max_memory_allocated() // 1024**2}M start_epoch={start_epoch}, global_step={global_step}\033[0m")

    return (
        model,
        model_without_ddp,
        optimizer,
        scheduler,
        scaler,
        tokenizer,
        start_epoch,
        global_step,
    )