Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,666 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
import os
import os
import io
import random
import numpy as np
from numpy.lib.function_base import disp
import torch
from torchvision import transforms
import warnings
from decord import VideoReader, cpu
from torch.utils.data import Dataset
from .random_erasing import RandomErasing
from .video_transforms import (
Compose, Resize, CenterCrop, Normalize,
create_random_augment, random_short_side_scale_jitter,
random_crop, random_resized_crop_with_shift, random_resized_crop,
horizontal_flip, random_short_side_scale_jitter, uniform_crop,
)
from .volume_transforms import ClipToTensor
try:
from petrel_client.client import Client
has_client = True
except ImportError:
has_client = False
class ANetDataset(Dataset):
"""Load your own video classification dataset."""
def __init__(self, anno_path, prefix='', split=' ', mode='train', clip_len=8,
frame_sample_rate=2, crop_size=224, short_side_size=256,
new_height=256, new_width=340, keep_aspect_ratio=True,
num_segment=1, num_crop=1, test_num_segment=10, test_num_crop=3,
args=None):
self.anno_path = anno_path
self.prefix = prefix
self.split = split
self.mode = mode
self.clip_len = clip_len
self.frame_sample_rate = frame_sample_rate
self.crop_size = crop_size
self.short_side_size = short_side_size
self.new_height = new_height
self.new_width = new_width
self.keep_aspect_ratio = keep_aspect_ratio
self.num_segment = num_segment
self.test_num_segment = test_num_segment
self.num_crop = num_crop
self.test_num_crop = test_num_crop
self.args = args
self.aug = False
self.rand_erase = False
assert num_segment == 1
if self.mode in ['train']:
self.aug = True
if self.args.reprob > 0:
self.rand_erase = True
if VideoReader is None:
raise ImportError("Unable to import `decord` which is required to read videos.")
import pandas as pd
cleaned = pd.read_csv(self.anno_path, header=None, delimiter=self.split)
self.dataset_samples = list(cleaned.values[:, 0])
self.total_time = list(cleaned.values[:, 1])
self.start_time = list(cleaned.values[:, 2])
self.end_time = list(cleaned.values[:, 3])
self.label_array = list(cleaned.values[:, 4])
self.client = None
if has_client:
self.client = Client('~/petreloss.conf')
if (mode == 'train'):
pass
elif (mode == 'validation'):
self.data_transform = Compose([
Resize(self.short_side_size, interpolation='bilinear'),
CenterCrop(size=(self.crop_size, self.crop_size)),
ClipToTensor(),
Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
elif mode == 'test':
self.data_resize = Compose([
Resize(size=(short_side_size), interpolation='bilinear')
])
self.data_transform = Compose([
ClipToTensor(),
Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
self.test_seg = []
self.test_dataset = []
self.test_total_time = []
self.test_start_time = []
self.test_end_time = []
self.test_label_array = []
for ck in range(self.test_num_segment):
for cp in range(self.test_num_crop):
for idx in range(len(self.label_array)):
self.test_total_time.append(self.total_time[idx])
self.test_start_time.append(self.start_time[idx])
self.test_end_time.append(self.end_time[idx])
sample_label = self.label_array[idx]
self.test_label_array.append(sample_label)
self.test_dataset.append(self.dataset_samples[idx])
self.test_seg.append((ck, cp))
def __getitem__(self, index):
if self.mode == 'train':
args = self.args
sample = self.dataset_samples[index]
total_time, start_time, end_time = self.total_time[index], self.start_time[index], self.end_time[index]
buffer = self.loadvideo_decord(sample, total_time, start_time, end_time, chunk_nb=-1) # T H W C
if len(buffer) == 0:
while len(buffer) == 0:
warnings.warn("video {} not correctly loaded during training".format(sample))
index = np.random.randint(self.__len__())
sample = self.dataset_samples[index]
total_time, start_time, end_time = self.total_time[index], self.start_time[index], self.end_time[index]
buffer = self.loadvideo_decord(sample, total_time, start_time, end_time, chunk_nb=-1)
if args.num_sample > 1:
frame_list = []
label_list = []
index_list = []
for _ in range(args.num_sample):
new_frames = self._aug_frame(buffer, args)
label = self.label_array[index]
frame_list.append(new_frames)
label_list.append(label)
index_list.append(index)
return frame_list, label_list, index_list, {}
else:
buffer = self._aug_frame(buffer, args)
return buffer, self.label_array[index], index, {}
elif self.mode == 'validation':
sample = self.dataset_samples[index]
total_time, start_time, end_time = self.total_time[index], self.start_time[index], self.end_time[index]
buffer = self.loadvideo_decord(sample, total_time, start_time, end_time, chunk_nb=0)
if len(buffer) == 0:
while len(buffer) == 0:
warnings.warn("video {} not correctly loaded during validation".format(sample))
index = np.random.randint(self.__len__())
sample = self.dataset_samples[index]
buffer = self.loadvideo_decord(sample, chunk_nb=0)
buffer = self.data_transform(buffer)
return buffer, self.label_array[index], sample.split("/")[-1].split(".")[0]
elif self.mode == 'test':
sample = self.test_dataset[index]
chunk_nb, split_nb = self.test_seg[index]
total_time, start_time, end_time = self.test_total_time[index], self.test_start_time[index], self.test_end_time[index]
buffer = self.loadvideo_decord(sample, total_time, start_time, end_time, chunk_nb=chunk_nb)
while len(buffer) == 0:
warnings.warn("video {}, temporal {}, spatial {} not found during testing".format(\
str(self.test_dataset[index]), chunk_nb, split_nb))
index = np.random.randint(self.__len__())
sample = self.test_dataset[index]
chunk_nb, split_nb = self.test_seg[index]
buffer = self.loadvideo_decord(sample, chunk_nb=chunk_nb)
buffer = self.data_resize(buffer)
if isinstance(buffer, list):
buffer = np.stack(buffer, 0)
if self.test_num_crop == 1:
spatial_step = 1.0 * (max(buffer.shape[1], buffer.shape[2]) - self.short_side_size) / 2
spatial_start = int(spatial_step)
else:
spatial_step = 1.0 * (max(buffer.shape[1], buffer.shape[2]) - self.short_side_size) \
/ (self.test_num_crop - 1)
spatial_start = int(split_nb * spatial_step)
if buffer.shape[1] >= buffer.shape[2]:
buffer = buffer[:, spatial_start:spatial_start + self.short_side_size, :, :]
else:
buffer = buffer[:, :, spatial_start:spatial_start + self.short_side_size, :]
buffer = self.data_transform(buffer)
return buffer, self.test_label_array[index], sample.split("/")[-1].split(".")[0], \
chunk_nb, split_nb
else:
raise NameError('mode {} unkown'.format(self.mode))
def _aug_frame(
self,
buffer,
args,
):
aug_transform = create_random_augment(
input_size=(self.crop_size, self.crop_size),
auto_augment=args.aa,
interpolation=args.train_interpolation,
)
buffer = [
transforms.ToPILImage()(frame) for frame in buffer
]
buffer = aug_transform(buffer)
buffer = [transforms.ToTensor()(img) for img in buffer]
buffer = torch.stack(buffer) # T C H W
buffer = buffer.permute(0, 2, 3, 1) # T H W C
# T H W C
buffer = tensor_normalize(
buffer, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
)
# T H W C -> C T H W.
buffer = buffer.permute(3, 0, 1, 2)
# Perform data augmentation.
scl, asp = (
[0.08, 1.0],
[0.75, 1.3333],
)
buffer = spatial_sampling(
buffer,
spatial_idx=-1,
min_scale=256,
max_scale=320,
crop_size=self.crop_size,
random_horizontal_flip=False if args.data_set == 'SSV2' else True ,
inverse_uniform_sampling=False,
aspect_ratio=asp,
scale=scl,
motion_shift=False
)
if self.rand_erase:
erase_transform = RandomErasing(
args.reprob,
mode=args.remode,
max_count=args.recount,
num_splits=args.recount,
device="cpu",
)
buffer = buffer.permute(1, 0, 2, 3)
buffer = erase_transform(buffer)
buffer = buffer.permute(1, 0, 2, 3)
return buffer
def _get_seq_frames(self, video_size, start_index, num_frames, clip_idx=-1):
seg_size = max(0., float(video_size - 1) / num_frames)
max_frame = int(video_size) - 1
seq = []
# index from 1, must add 1
if clip_idx == -1:
for i in range(num_frames):
start = int(np.round(seg_size * i))
end = int(np.round(seg_size * (i + 1)))
idx = min(random.randint(start, end), max_frame)
seq.append(idx)
else:
num_segment = 1
if self.mode == 'test':
num_segment = self.test_num_segment
duration = seg_size / (num_segment + 1)
for i in range(num_frames):
start = int(np.round(seg_size * i))
frame_index = start + int(duration * (clip_idx + 1))
idx = min(frame_index, max_frame)
seq.append(idx)
seq = np.array(seq)
return seq + start_index
def loadvideo_decord(self, sample, total_time, start_time, end_time, chunk_nb=0):
"""Load video content using Decord"""
fname = sample
fname = os.path.join(self.prefix, fname)
try:
if self.keep_aspect_ratio:
if "s3://" in fname:
video_bytes = self.client.get(fname)
vr = VideoReader(io.BytesIO(video_bytes),
num_threads=1,
ctx=cpu(0))
else:
vr = VideoReader(fname, num_threads=1, ctx=cpu(0))
else:
if "s3://" in fname:
video_bytes = self.client.get(fname)
vr = VideoReader(io.BytesIO(video_bytes),
width=self.new_width,
height=self.new_height,
num_threads=1,
ctx=cpu(0))
else:
vr = VideoReader(fname, width=self.new_width, height=self.new_height,
num_threads=1, ctx=cpu(0))
duration = len(vr)
start_index = 0
if total_time!= -1 and start_time != -1 and end_time != -1:
fps = duration / total_time
duration = int(fps * (end_time - start_time))
start_index = int(fps * start_time)
all_index = self._get_seq_frames(duration, start_index, self.clip_len, clip_idx=chunk_nb)
vr.seek(0)
buffer = vr.get_batch(all_index).asnumpy()
return buffer
except:
print("video cannot be loaded by decord: ", fname)
return []
def __len__(self):
if self.mode != 'test':
return len(self.dataset_samples)
else:
return len(self.test_dataset)
def spatial_sampling(
frames,
spatial_idx=-1,
min_scale=256,
max_scale=320,
crop_size=224,
random_horizontal_flip=True,
inverse_uniform_sampling=False,
aspect_ratio=None,
scale=None,
motion_shift=False,
):
"""
Perform spatial sampling on the given video frames. If spatial_idx is
-1, perform random scale, random crop, and random flip on the given
frames. If spatial_idx is 0, 1, or 2, perform spatial uniform sampling
with the given spatial_idx.
Args:
frames (tensor): frames of images sampled from the video. The
dimension is `num frames` x `height` x `width` x `channel`.
spatial_idx (int): if -1, perform random spatial sampling. If 0, 1,
or 2, perform left, center, right crop if width is larger than
height, and perform top, center, buttom crop if height is larger
than width.
min_scale (int): the minimal size of scaling.
max_scale (int): the maximal size of scaling.
crop_size (int): the size of height and width used to crop the
frames.
inverse_uniform_sampling (bool): if True, sample uniformly in
[1 / max_scale, 1 / min_scale] and take a reciprocal to get the
scale. If False, take a uniform sample from [min_scale,
max_scale].
aspect_ratio (list): Aspect ratio range for resizing.
scale (list): Scale range for resizing.
motion_shift (bool): Whether to apply motion shift for resizing.
Returns:
frames (tensor): spatially sampled frames.
"""
assert spatial_idx in [-1, 0, 1, 2]
if spatial_idx == -1:
if aspect_ratio is None and scale is None:
frames, _ = random_short_side_scale_jitter(
images=frames,
min_size=min_scale,
max_size=max_scale,
inverse_uniform_sampling=inverse_uniform_sampling,
)
frames, _ = random_crop(frames, crop_size)
else:
transform_func = (
random_resized_crop_with_shift
if motion_shift
else random_resized_crop
)
frames = transform_func(
images=frames,
target_height=crop_size,
target_width=crop_size,
scale=scale,
ratio=aspect_ratio,
)
if random_horizontal_flip:
frames, _ = horizontal_flip(0.5, frames)
else:
# The testing is deterministic and no jitter should be performed.
# min_scale, max_scale, and crop_size are expect to be the same.
assert len({min_scale, max_scale, crop_size}) == 1
frames, _ = random_short_side_scale_jitter(
frames, min_scale, max_scale
)
frames, _ = uniform_crop(frames, crop_size, spatial_idx)
return frames
def tensor_normalize(tensor, mean, std):
"""
Normalize a given tensor by subtracting the mean and dividing the std.
Args:
tensor (tensor): tensor to normalize.
mean (tensor or list): mean value to subtract.
std (tensor or list): std to divide.
"""
if tensor.dtype == torch.uint8:
tensor = tensor.float()
tensor = tensor / 255.0
if type(mean) == list:
mean = torch.tensor(mean)
if type(std) == list:
std = torch.tensor(std)
tensor = tensor - mean
tensor = tensor / std
return tensor
|