Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,652 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import os
import cv2
import io
import numpy as np
import torch
import decord
from PIL import Image
from decord import VideoReader, cpu
import random
try:
from petrel_client.client import Client
has_client = True
except ImportError:
has_client = False
class VideoMAE(torch.utils.data.Dataset):
"""Load your own video classification dataset.
Parameters
----------
root : str, required.
Path to the root folder storing the dataset.
setting : str, required.
A text file describing the dataset, each line per video sample.
There are three items in each line: (1) video path; (2) video length and (3) video label.
prefix : str, required.
The prefix for loading data.
split : str, required.
The split character for metadata.
train : bool, default True.
Whether to load the training or validation set.
test_mode : bool, default False.
Whether to perform evaluation on the test set.
Usually there is three-crop or ten-crop evaluation strategy involved.
name_pattern : str, default None.
The naming pattern of the decoded video frames.
For example, img_00012.jpg.
video_ext : str, default 'mp4'.
If video_loader is set to True, please specify the video format accordinly.
is_color : bool, default True.
Whether the loaded image is color or grayscale.
modality : str, default 'rgb'.
Input modalities, we support only rgb video frames for now.
Will add support for rgb difference image and optical flow image later.
num_segments : int, default 1.
Number of segments to evenly divide the video into clips.
A useful technique to obtain global video-level information.
Limin Wang, etal, Temporal Segment Networks: Towards Good Practices for Deep Action Recognition, ECCV 2016.
num_crop : int, default 1.
Number of crops for each image. default is 1.
Common choices are three crops and ten crops during evaluation.
new_length : int, default 1.
The length of input video clip. Default is a single image, but it can be multiple video frames.
For example, new_length=16 means we will extract a video clip of consecutive 16 frames.
new_step : int, default 1.
Temporal sampling rate. For example, new_step=1 means we will extract a video clip of consecutive frames.
new_step=2 means we will extract a video clip of every other frame.
temporal_jitter : bool, default False.
Whether to temporally jitter if new_step > 1.
video_loader : bool, default False.
Whether to use video loader to load data.
use_decord : bool, default True.
Whether to use Decord video loader to load data. Otherwise load image.
transform : function, default None.
A function that takes data and label and transforms them.
data_aug : str, default 'v1'.
Different types of data augmentation auto. Supports v1, v2, v3 and v4.
lazy_init : bool, default False.
If set to True, build a dataset instance without loading any dataset.
"""
def __init__(self,
root,
setting,
prefix='',
split=' ',
train=True,
test_mode=False,
name_pattern='img_%05d.jpg',
video_ext='mp4',
is_color=True,
modality='rgb',
num_segments=1,
num_crop=1,
new_length=1,
new_step=1,
transform=None,
temporal_jitter=False,
video_loader=False,
use_decord=True,
lazy_init=False,
num_sample=1,
):
super(VideoMAE, self).__init__()
self.root = root
self.setting = setting
self.prefix = prefix
self.split = split
self.train = train
self.test_mode = test_mode
self.is_color = is_color
self.modality = modality
self.num_segments = num_segments
self.num_crop = num_crop
self.new_length = new_length
self.new_step = new_step
self.skip_length = self.new_length * self.new_step
self.temporal_jitter = temporal_jitter
self.name_pattern = name_pattern
self.video_loader = video_loader
self.video_ext = video_ext
self.use_decord = use_decord
self.transform = transform
self.lazy_init = lazy_init
self.num_sample = num_sample
# sparse sampling, num_segments != 1
if self.num_segments != 1:
print('Use sparse sampling, change frame and stride')
self.new_length = self.num_segments
self.skip_length = 1
self.client = None
if has_client:
self.client = Client('~/petreloss.conf')
if not self.lazy_init:
self.clips = self._make_dataset(root, setting)
if len(self.clips) == 0:
raise(RuntimeError("Found 0 video clips in subfolders of: " + root + "\n"
"Check your data directory (opt.data-dir)."))
def __getitem__(self, index):
while True:
try:
images = None
if self.use_decord:
directory, target = self.clips[index]
if self.video_loader:
if '.' in directory.split('/')[-1]:
# data in the "setting" file already have extension, e.g., demo.mp4
video_name = directory
else:
# data in the "setting" file do not have extension, e.g., demo
# So we need to provide extension (i.e., .mp4) to complete the file name.
video_name = '{}.{}'.format(directory, self.video_ext)
video_name = os.path.join(self.prefix, video_name)
if video_name.startswith('s3') or video_name.startswith('p2:s3'):
video_bytes = self.client.get(video_name)
decord_vr = VideoReader(io.BytesIO(video_bytes),
num_threads=1,
ctx=cpu(0))
else:
decord_vr = decord.VideoReader(video_name, num_threads=1, ctx=cpu(0))
duration = len(decord_vr)
segment_indices, skip_offsets = self._sample_train_indices(duration)
images = self._video_TSN_decord_batch_loader(directory, decord_vr, duration, segment_indices, skip_offsets)
else:
video_name, total_frame, target = self.clips[index]
video_name = os.path.join(self.prefix, video_name)
segment_indices, skip_offsets = self._sample_train_indices(total_frame)
frame_id_list = self._get_frame_id_list(total_frame, segment_indices, skip_offsets)
images = []
for idx in frame_id_list:
frame_fname = os.path.join(video_name, self.name_pattern.format(idx))
img_bytes = self.client.get(frame_fname)
img_np = np.frombuffer(img_bytes, np.uint8)
img = cv2.imdecode(img_np, cv2.IMREAD_COLOR)
cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
images.append(Image.fromarray(img))
if images is not None:
break
except Exception as e:
print("Failed to load video from {} with error {}".format(
video_name, e))
index = random.randint(0, len(self.clips) - 1)
if self.num_sample > 1:
process_data_list = []
mask_list = []
for _ in range(self.num_sample):
process_data, mask = self.transform((images, None))
process_data = process_data.view((self.new_length, 3) + process_data.size()[-2:]).transpose(0, 1)
process_data_list.append(process_data)
mask_list.append(mask)
return process_data_list, mask_list
else:
process_data, mask = self.transform((images, None)) # T*C,H,W
process_data = process_data.view((self.new_length, 3) + process_data.size()[-2:]).transpose(0, 1) # T*C,H,W -> T,C,H,W -> C,T,H,W
return (process_data, mask)
def __len__(self):
return len(self.clips)
def _make_dataset(self, directory, setting):
if not os.path.exists(setting):
raise(RuntimeError("Setting file %s doesn't exist. Check opt.train-list and opt.val-list. " % (setting)))
clips = []
print(f'Load dataset using decord: {self.use_decord}')
with open(setting) as split_f:
data = split_f.readlines()
for line in data:
line_info = line.split(self.split)
if len(line_info) < 2:
raise(RuntimeError('Video input format is not correct, missing one or more element. %s' % line))
if self.use_decord:
# line format: video_path, video_label
clip_path = os.path.join(line_info[0])
target = int(line_info[1])
item = (clip_path, target)
else:
# line format: video_path, video_duration, video_label
clip_path = os.path.join(line_info[0])
total_frame = int(line_info[1])
target = int(line_info[2])
item = (clip_path, total_frame, target)
clips.append(item)
return clips
def _sample_train_indices(self, num_frames):
average_duration = (num_frames - self.skip_length + 1) // self.num_segments
if average_duration > 0:
offsets = np.multiply(list(range(self.num_segments)),
average_duration)
offsets = offsets + np.random.randint(average_duration,
size=self.num_segments)
elif num_frames > max(self.num_segments, self.skip_length):
offsets = np.sort(np.random.randint(
num_frames - self.skip_length + 1,
size=self.num_segments))
else:
offsets = np.zeros((self.num_segments,))
if self.temporal_jitter:
skip_offsets = np.random.randint(
self.new_step, size=self.skip_length // self.new_step)
else:
skip_offsets = np.zeros(
self.skip_length // self.new_step, dtype=int)
return offsets + 1, skip_offsets
def _get_frame_id_list(self, duration, indices, skip_offsets):
frame_id_list = []
for seg_ind in indices:
offset = int(seg_ind)
for i, _ in enumerate(range(0, self.skip_length, self.new_step)):
if offset + skip_offsets[i] <= duration:
frame_id = offset + skip_offsets[i] - 1
else:
frame_id = offset - 1
frame_id_list.append(frame_id)
if offset + self.new_step < duration:
offset += self.new_step
return frame_id_list
def _video_TSN_decord_batch_loader(self, directory, video_reader, duration, indices, skip_offsets):
sampled_list = []
frame_id_list = []
for seg_ind in indices:
offset = int(seg_ind)
for i, _ in enumerate(range(0, self.skip_length, self.new_step)):
if offset + skip_offsets[i] <= duration:
frame_id = offset + skip_offsets[i] - 1
else:
frame_id = offset - 1
frame_id_list.append(frame_id)
if offset + self.new_step < duration:
offset += self.new_step
try:
video_data = video_reader.get_batch(frame_id_list).asnumpy()
sampled_list = [Image.fromarray(video_data[vid, :, :, :]).convert('RGB') for vid, _ in enumerate(frame_id_list)]
except:
raise RuntimeError('Error occured in reading frames {} from video {} of duration {}.'.format(frame_id_list, directory, duration))
return sampled_list |