File size: 12,652 Bytes
2d9a728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import os
import cv2
import io
import numpy as np
import torch
import decord
from PIL import Image
from decord import VideoReader, cpu
import random

try:
    from petrel_client.client import Client
    has_client = True
except ImportError:
    has_client = False


class VideoMAE(torch.utils.data.Dataset):
    """Load your own video classification dataset.
    Parameters
    ----------
    root : str, required.
        Path to the root folder storing the dataset.
    setting : str, required.
        A text file describing the dataset, each line per video sample.
        There are three items in each line: (1) video path; (2) video length and (3) video label.
    prefix : str, required.
        The prefix for loading data.
    split : str, required.
        The split character for metadata.
    train : bool, default True.
        Whether to load the training or validation set.
    test_mode : bool, default False.
        Whether to perform evaluation on the test set.
        Usually there is three-crop or ten-crop evaluation strategy involved.
    name_pattern : str, default None.
        The naming pattern of the decoded video frames.
        For example, img_00012.jpg.
    video_ext : str, default 'mp4'.
        If video_loader is set to True, please specify the video format accordinly.
    is_color : bool, default True.
        Whether the loaded image is color or grayscale.
    modality : str, default 'rgb'.
        Input modalities, we support only rgb video frames for now.
        Will add support for rgb difference image and optical flow image later.
    num_segments : int, default 1.
        Number of segments to evenly divide the video into clips.
        A useful technique to obtain global video-level information.
        Limin Wang, etal, Temporal Segment Networks: Towards Good Practices for Deep Action Recognition, ECCV 2016.
    num_crop : int, default 1.
        Number of crops for each image. default is 1.
        Common choices are three crops and ten crops during evaluation.
    new_length : int, default 1.
        The length of input video clip. Default is a single image, but it can be multiple video frames.
        For example, new_length=16 means we will extract a video clip of consecutive 16 frames.
    new_step : int, default 1.
        Temporal sampling rate. For example, new_step=1 means we will extract a video clip of consecutive frames.
        new_step=2 means we will extract a video clip of every other frame.
    temporal_jitter : bool, default False.
        Whether to temporally jitter if new_step > 1.
    video_loader : bool, default False.
        Whether to use video loader to load data.
    use_decord : bool, default True.
        Whether to use Decord video loader to load data. Otherwise load image.
    transform : function, default None.
        A function that takes data and label and transforms them.
    data_aug : str, default 'v1'.
        Different types of data augmentation auto. Supports v1, v2, v3 and v4.
    lazy_init : bool, default False.
        If set to True, build a dataset instance without loading any dataset.
    """
    def __init__(self,
                 root,
                 setting,
                 prefix='',
                 split=' ',
                 train=True,
                 test_mode=False,
                 name_pattern='img_%05d.jpg',
                 video_ext='mp4',
                 is_color=True,
                 modality='rgb',
                 num_segments=1,
                 num_crop=1,
                 new_length=1,
                 new_step=1,
                 transform=None,
                 temporal_jitter=False,
                 video_loader=False,
                 use_decord=True,
                 lazy_init=False,
                 num_sample=1,
                 ):

        super(VideoMAE, self).__init__()
        self.root = root
        self.setting = setting
        self.prefix = prefix
        self.split = split
        self.train = train
        self.test_mode = test_mode
        self.is_color = is_color
        self.modality = modality
        self.num_segments = num_segments
        self.num_crop = num_crop
        self.new_length = new_length
        self.new_step = new_step
        self.skip_length = self.new_length * self.new_step
        self.temporal_jitter = temporal_jitter
        self.name_pattern = name_pattern
        self.video_loader = video_loader
        self.video_ext = video_ext
        self.use_decord = use_decord
        self.transform = transform
        self.lazy_init = lazy_init
        self.num_sample = num_sample

        # sparse sampling, num_segments != 1
        if self.num_segments != 1:
            print('Use sparse sampling, change frame and stride')
            self.new_length = self.num_segments
            self.skip_length = 1

        self.client = None
        if has_client:
            self.client = Client('~/petreloss.conf')

        if not self.lazy_init:
            self.clips = self._make_dataset(root, setting)
            if len(self.clips) == 0:
                raise(RuntimeError("Found 0 video clips in subfolders of: " + root + "\n"
                                   "Check your data directory (opt.data-dir)."))

    def __getitem__(self, index):
        while True:
            try:
                images = None
                if self.use_decord:
                    directory, target = self.clips[index]
                    if self.video_loader:
                        if '.' in directory.split('/')[-1]:
                            # data in the "setting" file already have extension, e.g., demo.mp4
                            video_name = directory
                        else:
                            # data in the "setting" file do not have extension, e.g., demo
                            # So we need to provide extension (i.e., .mp4) to complete the file name.
                            video_name = '{}.{}'.format(directory, self.video_ext)

                        video_name = os.path.join(self.prefix, video_name)
                        if video_name.startswith('s3') or video_name.startswith('p2:s3'):
                            video_bytes = self.client.get(video_name)
                            decord_vr = VideoReader(io.BytesIO(video_bytes),
                                                    num_threads=1,
                                                    ctx=cpu(0))
                        else:
                            decord_vr = decord.VideoReader(video_name, num_threads=1, ctx=cpu(0))
                        duration = len(decord_vr)
                        
                    segment_indices, skip_offsets = self._sample_train_indices(duration)
                    images = self._video_TSN_decord_batch_loader(directory, decord_vr, duration, segment_indices, skip_offsets)
                
                else:
                    video_name, total_frame, target = self.clips[index]
                    video_name = os.path.join(self.prefix, video_name)

                    segment_indices, skip_offsets = self._sample_train_indices(total_frame)
                    frame_id_list = self._get_frame_id_list(total_frame, segment_indices, skip_offsets)
                    images = []
                    for idx in frame_id_list:
                        frame_fname = os.path.join(video_name, self.name_pattern.format(idx))
                        img_bytes = self.client.get(frame_fname)
                        img_np = np.frombuffer(img_bytes, np.uint8)
                        img = cv2.imdecode(img_np, cv2.IMREAD_COLOR)
                        cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
                        images.append(Image.fromarray(img))    
                if images is not None:
                    break
            except Exception as e:
                print("Failed to load video from {} with error {}".format(
                    video_name, e))
            index = random.randint(0, len(self.clips) - 1)
       
        if self.num_sample > 1:
            process_data_list = []
            mask_list = []
            for _ in range(self.num_sample):
                process_data, mask = self.transform((images, None))
                process_data = process_data.view((self.new_length, 3) + process_data.size()[-2:]).transpose(0, 1)
                process_data_list.append(process_data)
                mask_list.append(mask)
            return process_data_list, mask_list
        else:
            process_data, mask = self.transform((images, None)) # T*C,H,W
            process_data = process_data.view((self.new_length, 3) + process_data.size()[-2:]).transpose(0, 1)  # T*C,H,W -> T,C,H,W -> C,T,H,W
            return (process_data, mask)

    def __len__(self):
        return len(self.clips)

    def _make_dataset(self, directory, setting):
        if not os.path.exists(setting):
            raise(RuntimeError("Setting file %s doesn't exist. Check opt.train-list and opt.val-list. " % (setting)))
        clips = []

        print(f'Load dataset using decord: {self.use_decord}')
        with open(setting) as split_f:
            data = split_f.readlines()
            for line in data:
                line_info = line.split(self.split)
                if len(line_info) < 2:
                    raise(RuntimeError('Video input format is not correct, missing one or more element. %s' % line))
                if self.use_decord:
                    # line format: video_path, video_label
                    clip_path = os.path.join(line_info[0])
                    target = int(line_info[1])
                    item = (clip_path, target)
                else:
                    # line format: video_path, video_duration, video_label
                    clip_path = os.path.join(line_info[0])
                    total_frame = int(line_info[1])
                    target = int(line_info[2])
                    item = (clip_path, total_frame, target)
                clips.append(item)
        return clips

    def _sample_train_indices(self, num_frames):
        average_duration = (num_frames - self.skip_length + 1) // self.num_segments
        if average_duration > 0:
            offsets = np.multiply(list(range(self.num_segments)),
                                  average_duration)
            offsets = offsets + np.random.randint(average_duration,
                                                  size=self.num_segments)
        elif num_frames > max(self.num_segments, self.skip_length):
            offsets = np.sort(np.random.randint(
                num_frames - self.skip_length + 1,
                size=self.num_segments))
        else:
            offsets = np.zeros((self.num_segments,))

        if self.temporal_jitter:
            skip_offsets = np.random.randint(
                self.new_step, size=self.skip_length // self.new_step)
        else:
            skip_offsets = np.zeros(
                self.skip_length // self.new_step, dtype=int)
        return offsets + 1, skip_offsets

    def _get_frame_id_list(self, duration, indices, skip_offsets):
        frame_id_list = []
        for seg_ind in indices:
            offset = int(seg_ind)
            for i, _ in enumerate(range(0, self.skip_length, self.new_step)):
                if offset + skip_offsets[i] <= duration:
                    frame_id = offset + skip_offsets[i] - 1
                else:
                    frame_id = offset - 1
                frame_id_list.append(frame_id)
                if offset + self.new_step < duration:
                    offset += self.new_step
        return frame_id_list

    def _video_TSN_decord_batch_loader(self, directory, video_reader, duration, indices, skip_offsets):
        sampled_list = []
        frame_id_list = []
        for seg_ind in indices:
            offset = int(seg_ind)
            for i, _ in enumerate(range(0, self.skip_length, self.new_step)):
                if offset + skip_offsets[i] <= duration:
                    frame_id = offset + skip_offsets[i] - 1
                else:
                    frame_id = offset - 1
                frame_id_list.append(frame_id)
                if offset + self.new_step < duration:
                    offset += self.new_step
        try:
            video_data = video_reader.get_batch(frame_id_list).asnumpy()
            sampled_list = [Image.fromarray(video_data[vid, :, :, :]).convert('RGB') for vid, _ in enumerate(frame_id_list)]
        except:
            raise RuntimeError('Error occured in reading frames {} from video {} of duration {}.'.format(frame_id_list, directory, duration))
        return sampled_list