File size: 7,984 Bytes
2d9a728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import torch
import torchvision.transforms.functional as F
import warnings
import random
import numpy as np
import torchvision
from PIL import Image, ImageOps
import numbers


class GroupRandomCrop(object):
    def __init__(self, size):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size

    def __call__(self, img_tuple):
        img_group, label = img_tuple
        
        w, h = img_group[0].size
        th, tw = self.size

        out_images = list()

        x1 = random.randint(0, w - tw)
        y1 = random.randint(0, h - th)

        for img in img_group:
            assert(img.size[0] == w and img.size[1] == h)
            if w == tw and h == th:
                out_images.append(img)
            else:
                out_images.append(img.crop((x1, y1, x1 + tw, y1 + th)))

        return (out_images, label)


class GroupCenterCrop(object):
    def __init__(self, size):
        self.worker = torchvision.transforms.CenterCrop(size)

    def __call__(self, img_tuple):
        img_group, label = img_tuple
        return ([self.worker(img) for img in img_group], label)


class GroupRandomHorizontalFlip(object):
    def __init__(self, flip=False):
        self.flip = flip

    def __call__(self, img_tuple):
        v = random.random()
        if self.flip and v < 0.5:
            img_group, label = img_tuple
            ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group]
            return (ret, label)
        else:
            return img_tuple


class GroupNormalize(object):
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, tensor_tuple):
        tensor, label = tensor_tuple
        rep_mean = self.mean * (tensor.size()[0]//len(self.mean))
        rep_std = self.std * (tensor.size()[0]//len(self.std))
        
        # TODO: make efficient
        for t, m, s in zip(tensor, rep_mean, rep_std):
            t.sub_(m).div_(s)

        return (tensor,label)


class GroupGrayScale(object):
    def __init__(self, size):
        self.worker = torchvision.transforms.Grayscale(size)

    def __call__(self, img_tuple):
        img_group, label = img_tuple
        return ([self.worker(img) for img in img_group], label)


class GroupColorJitter(object):
    def __init__(self, size):
        self.worker = torchvision.transforms.ColorJitter(
            brightness=size, contrast=size, saturation=size
        )

    def __call__(self, img_tuple):
        img_group, label = img_tuple
        return ([self.worker(img) for img in img_group], label)

    
class GroupScale(object):
    """ Rescales the input PIL.Image to the given 'size'.
    'size' will be the size of the smaller edge.
    For example, if height > width, then image will be
    rescaled to (size * height / width, size)
    size: size of the smaller edge
    interpolation: Default: PIL.Image.BILINEAR
    """

    def __init__(self, size, interpolation=Image.BILINEAR):
        self.worker = torchvision.transforms.Resize(size, interpolation)

    def __call__(self, img_tuple):
        img_group, label = img_tuple
        return ([self.worker(img) for img in img_group], label)


class GroupMultiScaleCrop(object):

    def __init__(self, input_size, scales=None, max_distort=1, fix_crop=True, more_fix_crop=True):
        self.scales = scales if scales is not None else [1, 875, .75, .66]
        self.max_distort = max_distort
        self.fix_crop = fix_crop
        self.more_fix_crop = more_fix_crop
        self.input_size = input_size if not isinstance(input_size, int) else [input_size, input_size]
        self.interpolation = Image.BILINEAR

    def __call__(self, img_tuple):
        img_group, label = img_tuple
        
        im_size = img_group[0].size

        crop_w, crop_h, offset_w, offset_h = self._sample_crop_size(im_size)
        crop_img_group = [img.crop((offset_w, offset_h, offset_w + crop_w, offset_h + crop_h)) for img in img_group]
        ret_img_group = [img.resize((self.input_size[0], self.input_size[1]), self.interpolation) for img in crop_img_group]
        return (ret_img_group, label)

    def _sample_crop_size(self, im_size):
        image_w, image_h = im_size[0], im_size[1]

        # find a crop size
        base_size = min(image_w, image_h)
        crop_sizes = [int(base_size * x) for x in self.scales]
        crop_h = [self.input_size[1] if abs(x - self.input_size[1]) < 3 else x for x in crop_sizes]
        crop_w = [self.input_size[0] if abs(x - self.input_size[0]) < 3 else x for x in crop_sizes]

        pairs = []
        for i, h in enumerate(crop_h):
            for j, w in enumerate(crop_w):
                if abs(i - j) <= self.max_distort:
                    pairs.append((w, h))

        crop_pair = random.choice(pairs)
        if not self.fix_crop:
            w_offset = random.randint(0, image_w - crop_pair[0])
            h_offset = random.randint(0, image_h - crop_pair[1])
        else:
            w_offset, h_offset = self._sample_fix_offset(image_w, image_h, crop_pair[0], crop_pair[1])

        return crop_pair[0], crop_pair[1], w_offset, h_offset

    def _sample_fix_offset(self, image_w, image_h, crop_w, crop_h):
        offsets = self.fill_fix_offset(self.more_fix_crop, image_w, image_h, crop_w, crop_h)
        return random.choice(offsets)

    @staticmethod
    def fill_fix_offset(more_fix_crop, image_w, image_h, crop_w, crop_h):
        w_step = (image_w - crop_w) // 4
        h_step = (image_h - crop_h) // 4

        ret = list()
        ret.append((0, 0))  # upper left
        ret.append((4 * w_step, 0))  # upper right
        ret.append((0, 4 * h_step))  # lower left
        ret.append((4 * w_step, 4 * h_step))  # lower right
        ret.append((2 * w_step, 2 * h_step))  # center

        if more_fix_crop:
            ret.append((0, 2 * h_step))  # center left
            ret.append((4 * w_step, 2 * h_step))  # center right
            ret.append((2 * w_step, 4 * h_step))  # lower center
            ret.append((2 * w_step, 0 * h_step))  # upper center

            ret.append((1 * w_step, 1 * h_step))  # upper left quarter
            ret.append((3 * w_step, 1 * h_step))  # upper right quarter
            ret.append((1 * w_step, 3 * h_step))  # lower left quarter
            ret.append((3 * w_step, 3 * h_step))  # lower righ quarter
        return ret


class Stack(object):

    def __init__(self, roll=False):
        self.roll = roll

    def __call__(self, img_tuple):
        img_group, label = img_tuple
        
        if img_group[0].mode == 'L':
            return (np.concatenate([np.expand_dims(x, 2) for x in img_group], axis=2), label)
        elif img_group[0].mode == 'RGB':
            if self.roll:
                return (np.concatenate([np.array(x)[:, :, ::-1] for x in img_group], axis=2), label)
            else:
                return (np.concatenate(img_group, axis=2), label)


class ToTorchFormatTensor(object):
    """ Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255]
    to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] """
    def __init__(self, div=True):
        self.div = div

    def __call__(self, pic_tuple):
        pic, label = pic_tuple
        
        if isinstance(pic, np.ndarray):
            # handle numpy array
            img = torch.from_numpy(pic).permute(2, 0, 1).contiguous()
        else:
            # handle PIL Image
            img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
            img = img.view(pic.size[1], pic.size[0], len(pic.mode))
            # put it from HWC to CHW format
            # yikes, this transpose takes 80% of the loading time/CPU
            img = img.transpose(0, 1).transpose(0, 2).contiguous()
        return (img.float().div(255.) if self.div else img.float(), label)


class IdentityTransform(object):

    def __call__(self, data):
        return data