File size: 22,880 Bytes
2d9a728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
import math
import torch
import torch.nn.functional as F
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from torch import nn

import torch.utils.checkpoint as checkpoint
from functools import partial
from einops import rearrange

from .pos_embed import get_3d_sincos_pos_embed, get_2d_sincos_pos_embed, get_1d_sincos_pos_embed
from .flash_attention_class import FlashAttention
from flash_attn.modules.mlp import FusedMLP
from flash_attn.ops.rms_norm import DropoutAddRMSNorm


class CrossAttention(nn.Module):
    def __init__(
            self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
            proj_drop=0., attn_head_dim=None, out_dim=None):
        super().__init__()
        if out_dim is None:
            out_dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        if attn_head_dim is not None:
            head_dim = attn_head_dim
        all_head_dim = head_dim * self.num_heads
        self.scale = qk_scale or head_dim ** -0.5
        assert all_head_dim == dim
        
        self.q = nn.Linear(dim, all_head_dim, bias=False)
        self.k = nn.Linear(dim, all_head_dim, bias=False)
        self.v = nn.Linear(dim, all_head_dim, bias=False)
        
        if qkv_bias:
            self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
            self.k_bias = nn.Parameter(torch.zeros(all_head_dim))
            self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
        else:
            self.q_bias = None
            self.k_bias = None
            self.v_bias = None
        
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(all_head_dim, out_dim)
        self.proj_drop = nn.Dropout(proj_drop)
    
    def forward(self, x, k=None, v=None):
        B, N, C = x.shape
        N_k = k.shape[1]
        N_v = v.shape[1]
        
        q_bias, k_bias, v_bias = None, None, None
        if self.q_bias is not None:
            q_bias = self.q_bias
            k_bias = self.k_bias
            v_bias = self.v_bias
        
        q = F.linear(input=x, weight=self.q.weight, bias=q_bias)
        q = q.reshape(B, N, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)  # (B, N_head, N_q, dim)
        
        k = F.linear(input=k, weight=self.k.weight, bias=k_bias)
        k = k.reshape(B, N_k, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)
        
        v = F.linear(input=v, weight=self.v.weight, bias=v_bias)
        v = v.reshape(B, N_v, 1, self.num_heads, -1).permute(2, 0, 3, 1, 4).squeeze(0)
        
        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))  # (B, N_head, N_q, N_k)
        
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
        
        x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
        x = self.proj(x)
        x = self.proj_drop(x)
        
        return x


class AttentiveBlock(nn.Module):
    
    def __init__(self, dim, num_heads, qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., norm_layer=nn.LayerNorm, attn_head_dim=None, out_dim=None):
        super().__init__()
        
        self.norm1_q = norm_layer(dim)
        self.norm1_k = norm_layer(dim)
        self.norm1_v = norm_layer(dim)
        self.cross_attn = CrossAttention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop,
            proj_drop=drop, attn_head_dim=attn_head_dim, out_dim=out_dim)
        
        if drop_path > 0.:
            print(f"Use DropPath in projector: {drop_path}")
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
    
    def forward(self, x_q, x_kv, pos_q, pos_k, bool_masked_pos, rel_pos_bias=None):
        x_q = self.norm1_q(x_q + pos_q)
        x_k = self.norm1_k(x_kv + pos_k)
        x_v = self.norm1_v(x_kv)
        x = self.cross_attn(x_q, k=x_k, v=x_v)
        
        return x


class AttentionPoolingBlock(AttentiveBlock):
    
    def forward(self, x):
        x_q = x.mean(1, keepdim=True)
        x_kv, pos_q, pos_k = x, 0, 0
        x = super().forward(x_q, x_kv, pos_q, pos_k, bool_masked_pos=None, rel_pos_bias=None)
        x = x.squeeze(1)
        return x


class RMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps
    
    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)


class LayerScale(nn.Module):
    def __init__(self, dim, init_values=1e-5, inplace=False, force_fp32=False):
        super().__init__()
        self.inplace = inplace
        self.gamma = nn.Parameter(init_values * torch.ones(dim))
        self.force_fp32 = force_fp32
    
    @torch.cuda.amp.autocast(enabled=False)
    def forward(self, x):
        if self.force_fp32:
            output_type = x.dtype
            out = x.float().mul_(self.gamma.float()) if self.inplace else x.float() * self.gamma.float()
            return out.to(dtype=output_type)
        else:
            out = x.mul_(self.gamma) if self.inplace else x * self.gamma
            return out


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., use_flash_attn=False,
                 causal=False, norm_layer=nn.LayerNorm, qk_normalization=False, use_fused_rmsnorm=False):
        super().__init__()
        assert dim % num_heads == 0, 'dim should be divisible by num_heads'
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5
        
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        
        self.use_flash_attn = use_flash_attn
        if use_flash_attn:
            self.causal = causal
            self.inner_attn = FlashAttention(attention_dropout=attn_drop)
        
        self.qk_normalization = qk_normalization
        self.q_norm = norm_layer(dim) if qk_normalization else nn.Identity()
        self.k_norm = norm_layer(dim) if qk_normalization else nn.Identity()
        self.use_fused_rmsnorm = use_fused_rmsnorm
    
    def _naive_attn(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)  # make torchscript happy (cannot use tensor as tuple)
        
        if self.qk_normalization:
            B_, H_, N_, D_ = q.shape
            q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
            k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
        
        attn = ((q * self.scale) @ k.transpose(-2, -1))
        # attn = attn - attn.max(-1)[0].unsqueeze(-1)  # in case of overflow for fp16
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
        
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x
    
    def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
        
        qkv = self.qkv(x)
        qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads)
        
        if self.qk_normalization:
            q, k, v = qkv.unbind(2)
            if self.use_fused_rmsnorm:
                q = self.q_norm(q.flatten(-2, -1))[0].view(q.shape)
                k = self.k_norm(k.flatten(-2, -1))[0].view(k.shape)
            else:
                q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
                k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
            qkv = torch.stack([q, k, v], dim=2)
        
        context, _ = self.inner_attn(
            qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=self.causal
        )
        outs = self.proj(rearrange(context, "b s h d -> b s (h d)"))
        outs = self.proj_drop(outs)
        return outs
    
    def forward(self, x):
        x = self._naive_attn(x) if not self.use_flash_attn else self._flash_attn(x)
        return x


class Mlp(nn.Module):
    """ MLP as used in Vision Transformer, MLP-Mixer and related networks
    """
    
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU,
                 bias=True, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        bias = to_2tuple(bias)
        drop_probs = to_2tuple(drop)
        
        self.fc1 = nn.Linear(in_features, hidden_features, bias=bias[0])
        self.act = act_layer()
        self.drop1 = nn.Dropout(drop_probs[0])
        self.fc2 = nn.Linear(hidden_features, out_features, bias=bias[1])
        self.drop2 = nn.Dropout(drop_probs[1])
    
    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop1(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x


class Block(nn.Module):
    
    def __init__(
            self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., init_values=None,
            drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_flash_attn=False, use_fused_mlp=False,
            fused_mlp_heuristic=1, with_cp=False, qk_normalization=False, layerscale_no_force_fp32=False,
            use_fused_rmsnorm=False):
        super().__init__()
        
        self.norm1 = norm_layer(dim)
        self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
                              use_flash_attn=use_flash_attn, causal=False, norm_layer=norm_layer,
                              qk_normalization=qk_normalization,
                              use_fused_rmsnorm=use_fused_rmsnorm)
        self.ls1 = LayerScale(dim, init_values=init_values,
                              force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity()
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        if use_fused_mlp:
            self.mlp = FusedMLP(in_features=dim, hidden_features=mlp_hidden_dim, heuristic=fused_mlp_heuristic)
        else:
            self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        self.ls2 = LayerScale(dim, init_values=init_values,
                              force_fp32=(not layerscale_no_force_fp32)) if init_values else nn.Identity()
        self.drop_path2 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        
        self.with_cp = with_cp
        self.use_fused_rmsnorm = use_fused_rmsnorm
    
    def forward(self, x, residual=None):
        
        def _inner_forward(x, residual=None):
            if self.use_fused_rmsnorm:
                x, residual = self.norm1(x, residual)
                x = self.drop_path1(self.ls1(self.attn(x)))
                x, residual = self.norm2(x, residual)
                x = self.drop_path2(self.ls2(self.mlp(x)))
                return x, residual
            else:
                assert residual is None
                x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x))))
                x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
                return x
        
        if self.with_cp:
            return checkpoint.checkpoint(_inner_forward, x, residual)
        else:
            return _inner_forward(x, residual=residual)


class PatchEmbed(nn.Module):
    """ 3D Image to Patch Embedding
    """
    
    def __init__(
            self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, 
            num_frames=8, tubelet_size=1, norm_layer=None
        ):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.tubelet_size = tubelet_size
        self.grid_size = (
            num_frames // tubelet_size, 
            img_size[0] // patch_size[0], 
            img_size[1] // patch_size[1]
        ) # (T, H, W)
        self.num_patches = self.grid_size[0] * self.grid_size[1] * self.grid_size[2]
        
        self.proj = nn.Conv3d(
            in_channels=in_chans, out_channels=embed_dim, 
            kernel_size=(tubelet_size, patch_size[0], patch_size[1]), 
            stride=(tubelet_size, patch_size[0], patch_size[1])
        )
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
    
    def forward(self, x):
        x = self.proj(x)
        x = x.flatten(3).permute(0, 2, 3, 1)  # B x C x T x HW => B x T x HW x C
        x = self.norm(x)
        return x


class InternVideo2(nn.Module):
    def __init__(
            self,
            in_chans: int = 3,
            patch_size: int = 14,
            img_size: int = 224,
            qkv_bias: bool = False,
            drop_path_rate: float = 0.25,
            embed_dim: int = 1408,
            head_drop_path_rate: float = 0.,
            num_heads: int = 16,
            mlp_ratio: float = 4.3637,
            init_values: float = 1e-5,
            qk_normalization: bool = True,
            depth: int = 40,
            use_flash_attn: bool = True,
            use_fused_rmsnorm: bool = True,
            use_fused_mlp: bool = True,
            fused_mlp_heuristic: int = 1,
            attn_pool_num_heads: int = 16,
            clip_embed_dim: int = 768,
            layerscale_no_force_fp32: bool = False,
            num_frames: int = 8,
            tubelet_size: int = 1,
            sep_pos_embed: bool = False,
            use_checkpoint: bool = False,
            checkpoint_num: int = 0,
            fc_drop_rate: float = 0., 
            num_classes: int = 1000, 
            init_scale: float = 0.001,
        ):
        super().__init__()
        
        assert use_flash_attn == use_fused_rmsnorm == use_fused_mlp, print(
            'use_flash_attn, use_fused_rmsnorm and use_fused_mlp should be consistent')
        print(mlp_ratio)
        
        self.use_flash_attn = use_flash_attn
        self.embed_dim = embed_dim
        
        if use_fused_rmsnorm:
            norm_layer_for_blocks = partial(DropoutAddRMSNorm, eps=1e-6, prenorm=True)
        else:
            norm_layer_for_blocks = partial(RMSNorm, eps=1e-6)
        self.norm_layer_for_blocks = norm_layer_for_blocks
        self.patch_embed = PatchEmbed(
            img_size, patch_size, in_chans, embed_dim,
            num_frames=num_frames, tubelet_size=tubelet_size,
        )
        num_patches = self.patch_embed.num_patches
        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        
        # stolen from https://github.com/facebookresearch/mae_st/blob/dc072aaaf640d06892e23a33b42223a994efe272/models_vit.py#L65-L73C17
        self.sep_pos_embed = sep_pos_embed
        if sep_pos_embed:
            print("Use seperable position embedding")
            grid_size = self.patch_embed.grid_size
            self.grid_size = grid_size
            self.pos_embed_spatial = nn.Parameter(torch.zeros(1, grid_size[1] * grid_size[2], embed_dim))
            self.pos_embed_temporal = nn.Parameter(torch.zeros(1, grid_size[0], embed_dim))
            self.pos_embed_cls = nn.Parameter(torch.zeros(1, 1, embed_dim))
        else:
            print("Use joint position embedding")
            self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
        
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
        # choose which layer to use checkpoint
        with_cp_list = [False] * depth
        if use_checkpoint:
            for idx in range(depth):
                if idx < checkpoint_num:
                    with_cp_list[idx] = True
        print(f"Droppath rate: {dpr}")
        print(f"Checkpoint list: {with_cp_list}")
        
        self.blocks = nn.ModuleList([
            Block(embed_dim, num_heads, mlp_ratio, qkv_bias=qkv_bias,
                  norm_layer=norm_layer_for_blocks,
                  drop_path=dpr[i], init_values=init_values, attn_drop=0.,
                  use_flash_attn=use_flash_attn, use_fused_mlp=use_fused_mlp,
                  fused_mlp_heuristic=fused_mlp_heuristic,
                  with_cp=with_cp_list[i],
                  qk_normalization=qk_normalization,
                  layerscale_no_force_fp32=layerscale_no_force_fp32,
                  use_fused_rmsnorm=use_fused_rmsnorm)
            for i in range(depth)])
        self.clip_projector = AttentionPoolingBlock(
            dim=embed_dim, num_heads=attn_pool_num_heads, qkv_bias=True, qk_scale=None,
            drop=0., attn_drop=0., drop_path=head_drop_path_rate, 
            norm_layer=partial(nn.LayerNorm, eps=1e-5), out_dim=clip_embed_dim
        )
        
        self.fc_norm = nn.LayerNorm(clip_embed_dim)
        self.fc_dropout = nn.Dropout(p=fc_drop_rate) if fc_drop_rate > 0 else nn.Identity()
        self.head = nn.Linear(clip_embed_dim, num_classes)

        self.init_pos_embed()
        trunc_normal_(self.cls_token, std=.02)
        self.apply(self._init_weights)
        self.fix_init_weight()
        self.head.weight.data.mul_(init_scale)
        self.head.bias.data.mul_(init_scale)

    def init_pos_embed(self):
        print("Init pos_embed from sincos pos_embed")
        if self.sep_pos_embed:
            # trunc_normal_(self.pos_embed_spatial, std=.02)
            # trunc_normal_(self.pos_embed_temporal, std=.02)
            # trunc_normal_(self.pos_embed_cls, std=.02)
            pos_embed_spatial = get_2d_sincos_pos_embed(
                self.pos_embed_spatial.shape[-1], 
                self.patch_embed.grid_size[1], # height & weight
            )
            self.pos_embed_spatial.data.copy_(torch.from_numpy(pos_embed_spatial).float().unsqueeze(0))
            pos_embed_temporal = get_1d_sincos_pos_embed(
                self.pos_embed_spatial.shape[-1], 
                self.patch_embed.grid_size[0], # t_size
            )
            self.pos_embed_temporal.data.copy_(torch.from_numpy(pos_embed_temporal).float().unsqueeze(0))
        else:
            # trunc_normal_(self.pos_embed, std=.02)
            pos_embed = get_3d_sincos_pos_embed(
                self.pos_embed.shape[-1], 
                self.patch_embed.grid_size[1], # height & weight
                self.patch_embed.grid_size[0], # t_size
                cls_token=True
            )
            self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def fix_init_weight(self):
        def rescale(param, layer_id):
            param.div_(math.sqrt(2.0 * layer_id))

        for layer_id, layer in enumerate(self.blocks):
            rescale(layer.attn.proj.weight.data, layer_id + 1)
            rescale(layer.mlp.fc2.weight.data, layer_id + 1)
    
    @property
    def dtype(self):
        return self.patch_embed.proj.weight.dtype

    def get_num_layers(self):
        return len(self.blocks)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {
            'pos_embed', 
            'pos_embed_spatial', 
            'pos_embed_temporal', 
            'pos_embed_cls',
            'cls_token'
        }
    
    def forward(self, x):
        x = self.patch_embed(x.type(self.dtype))
        B, T, L, C = x.shape  # T: temporal; L: spatial
        x = x.view([B, T * L, C])

        # append cls token
        cls_tokens = self.cls_token.expand(B, -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)

        # add pos_embed
        if self.sep_pos_embed:
            pos_embed = self.pos_embed_spatial.repeat(
                1, self.grid_size[0], 1
            ) + torch.repeat_interleave(
                self.pos_embed_temporal,
                self.grid_size[1] * self.grid_size[2],
                dim=1,
            )
            pos_embed = torch.cat(
                [
                    self.pos_embed_cls.expand(pos_embed.shape[0], -1, -1),
                    pos_embed,
                ],
                1,
            )
        else:
            pos_embed = self.pos_embed
        x = x + pos_embed

        residual = None
        for blk in self.blocks:
            if isinstance(x, tuple) and len(x) == 2:
                x, residual = x
            x = blk(x, residual=residual)
        if isinstance(x, tuple) and len(x) == 2:
            x, residual = x
            if residual is not None:
                x = x + residual
        
        x = self.clip_projector(x)

        x = self.fc_norm(x)
        x = self.head(self.fc_dropout(x))
        return x


@register_model
def internvideo2_1B_patch14_224(pretrained=False, **kwargs):
    model = InternVideo2(
        img_size=224, patch_size=14, embed_dim=1408, 
        depth=40, num_heads=16, mlp_ratio=48/11, 
        attn_pool_num_heads=16, clip_embed_dim=768,
        **kwargs
    )
    return model


@register_model
def internvideo2_6B_patch14_224(pretrained=False, **kwargs):
    model = InternVideo2(
        img_size=224, patch_size=14, embed_dim=3200, 
        depth=48, num_heads=25, mlp_ratio=4, 
        attn_pool_num_heads=16, clip_embed_dim=768,
        **kwargs
    )
    return model


if __name__ == '__main__':
    import time
    from fvcore.nn import FlopCountAnalysis
    from fvcore.nn import flop_count_table
    import numpy as np

    seed = 4217
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    num_frames = 8
    img_size = 224

    # model = internvideo2_1B_patch14_224(num_classes=400).cuda().half()
    model = internvideo2_6B_patch14_224(num_classes=400).cuda().half()
    print(model)

    flops = FlopCountAnalysis(model, torch.rand(1, 3, num_frames, img_size, img_size).cuda().half())
    s = time.time()
    print(flop_count_table(flops, max_depth=1))
    print(time.time()-s)