File size: 14,158 Bytes
2d9a728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import os
from functools import partial
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
from flash_attn import flash_attn_func


MODEL_PATH = 'your_model_path/videomae'
_MODELS = {
    # see videomaev2
    "vit_g14_hybrid": os.path.join(MODEL_PATH, "vit_g_hybrid_1200e_pre.pth"),
}


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 400, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic',
        'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
        **kwargs
    }


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)
    
    def extra_repr(self) -> str:
        return 'p={}'.format(self.drop_prob)


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        # x = self.drop(x)
        # commit this for the orignal BERT implement 
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(
            self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
            proj_drop=0., attn_head_dim=None):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        if attn_head_dim is not None:
            head_dim = attn_head_dim
        all_head_dim = head_dim * self.num_heads
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
        if qkv_bias:
            self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
            self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
        else:
            self.q_bias = None
            self.v_bias = None

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(all_head_dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv_bias = None
        if self.q_bias is not None:
            qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
        # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
        qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]   # make torchscript happy (cannot use tensor as tuple)

        x = flash_attn_func(q, k, v, dropout_p=0.0, softmax_scale=self.scale, causal=False).reshape(B, N, -1)

        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
                 attn_head_dim=None):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
            attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

        if init_values > 0:
            self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
            self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
        else:
            self.gamma_1, self.gamma_2 = None, None

    def forward(self, x):
        if self.gamma_1 is None:
            x = x + self.drop_path(self.attn(self.norm1(x)))
            x = x + self.drop_path(self.mlp(self.norm2(x)))
        else:
            x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
            x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
        return x


class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """
    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, num_frames=16, tubelet_size=2):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        self.tubelet_size = int(tubelet_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * (num_frames // self.tubelet_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches
        self.proj = nn.Conv3d(in_channels=in_chans, out_channels=embed_dim, 
                            kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]), 
                            stride=(self.tubelet_size, patch_size[0], patch_size[1]))

    def forward(self, x, **kwargs):
        B, C, T, H, W = x.shape
        # FIXME look at relaxing size constraints
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x).flatten(2).transpose(1, 2)
        return x
    
# sin-cos position encoding
# https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31
def get_sinusoid_encoding_table(n_position, d_hid, cur_frame=-1, pre_n_position=1568): 
    ''' Sinusoid position encoding table ''' 
    # TODO: make it with torch instead of numpy 
    def get_position_angle_vec(position): 
        return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] 
    
    # generate checkpoint position embedding
    sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(pre_n_position)]) 
    sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i 
    sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 
    sinusoid_table = torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0)
    print(f"n_position: {n_position}")
    print(f"pre_n_position: {pre_n_position}")
    if n_position // cur_frame * 8 != pre_n_position and cur_frame != -1:
        T = 8 # checkpoint frame
        P = 14 # checkpoint size
        C = d_hid
        new_P = int((n_position // cur_frame) ** 0.5) # testing size
        print(f'Pretraining uses 14x14, but current version is {new_P}x{new_P}')
        print(f'Interpolate the position embedding')
        sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C)
        sinusoid_table = sinusoid_table.reshape(-1, P, P, C).permute(0, 3, 1, 2)
        sinusoid_table = torch.nn.functional.interpolate(
            sinusoid_table, size=(new_P, new_P), mode='bicubic', align_corners=False)
        # BT, C, H, W -> BT, H, W, C ->  B, T, H, W, C
        sinusoid_table = sinusoid_table.permute(0, 2, 3, 1).reshape(-1, T, new_P, new_P, C)
        sinusoid_table = sinusoid_table.flatten(1, 3)  # B, THW, C
    if cur_frame != -1 and cur_frame != 8:
        print(f'Pretraining uses 8 frames, but current frame is {cur_frame}')
        print(f'Interpolate the position embedding')
        T = 8 # checkpoint frame
        new_T = cur_frame # testing frame
        # interpolate
        P = int((n_position // cur_frame) ** 0.5) # testing size
        C = d_hid
        sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C)
        sinusoid_table = sinusoid_table.permute(0, 2, 3, 4, 1).reshape(-1, C, T)  # BHW, C, T
        sinusoid_table = torch.nn.functional.interpolate(sinusoid_table, size=new_T, mode='linear')
        sinusoid_table = sinusoid_table.reshape(1, P, P, C, new_T).permute(0, 4, 1, 2, 3) # B, T, H, W, C
        sinusoid_table = sinusoid_table.flatten(1, 3)  # B, THW, C
    if n_position == pre_n_position:
        return sinusoid_table
    else:
        print("Use learnable position embedding")
        return nn.Parameter(sinusoid_table, requires_grad=True)


class VisionTransformer(nn.Module):
    """ Vision Transformer with support for patch or hybrid CNN input stage
    """
    def __init__(
            self, 
            img_size=224, 
            patch_size=16, 
            in_chans=3, 
            embed_dim=768, 
            depth=12,
            num_heads=12, 
            mlp_ratio=4., 
            qkv_bias=False, 
            qk_scale=None, 
            drop_rate=0., 
            attn_drop_rate=0.,
            drop_path_rate=0., 
            norm_layer=nn.LayerNorm, 
            init_values=0.,
            all_frames=16,
            tubelet_size=2,
            mae_norm_type='l2',
            mae_return_layer=1,
            mae_return_interval=1,
        ):
        super().__init__()
        self.mae_norm_type = mae_norm_type
        self.return_index = []
        for i in range(mae_return_layer):
            self.return_index.append(depth - int(i * mae_return_interval) - 1)
        print(f'Normalization Type: {mae_norm_type}')
        print(f'MAE Teacher return index: : {self.return_index}')

        self.tubelet_size = tubelet_size
        self.depth = depth
        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, num_frames=all_frames, tubelet_size=self.tubelet_size)
        num_patches = self.patch_embed.num_patches

        # sine-cosine positional embeddings is on the way
        if patch_size == 14:
            pre_n_position = 2048
        else:
            pre_n_position = 1568
        self.pos_embed = get_sinusoid_encoding_table(
            num_patches, embed_dim, all_frames // tubelet_size,
            pre_n_position=pre_n_position
        )

        self.pos_drop = nn.Dropout(p=drop_rate)

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        self.blocks = nn.ModuleList([
            Block(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
                init_values=init_values)
            for i in range(depth)])
        self.norm = norm_layer(embed_dim)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def get_num_layers(self):
        return len(self.blocks)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    def forward(self, x, mask=None):
        x = self.patch_embed(x)
        B, _, C = x.size()

        if self.pos_embed is not None:
            x = x + self.pos_embed.expand(B, -1, -1).type_as(x).to(x.device).clone().detach()
        x = self.pos_drop(x)

        if mask is not None:
            x = x[~mask].reshape(B, -1, C) # ~mask means visible

        z = []
        for idx, blk in enumerate(self.blocks):
            x = blk(x)
            if idx == self.depth - 1:
                x = self.norm(x)
            if idx in self.return_index:
                z.append(x)
        x = torch.stack(z)

        if self.mae_norm_type == 'l2':
            x = x / x.norm(dim=-1, keepdim=True)
        elif self.mae_norm_type == 'none':
            pass
        else:
            raise NotImplementedError
        
        return x
    

def load_state_dict(model, state_dict):
    from collections import OrderedDict
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        if k.startswith('encoder.'):
            new_k = k[8:]
            if new_k == "patch_embed.proj.weight" and model.tubelet_size == 1:
                print("Kernel pooling")
                v = v.mean(dim=2, keepdim=True)
            new_state_dict[new_k] = v
    msg = model.load_state_dict(new_state_dict)
    print(msg)


def mae_g14_hybrid(pretrained=True, **kwargs):
    model = VisionTransformer(
        patch_size=14, embed_dim=1408, depth=40, num_heads=16, mlp_ratio=48/11, qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        print('load MAE pretrained weights')
        state_dict = torch.load(_MODELS["vit_g14_hybrid"], map_location='cpu')
        load_state_dict(model, state_dict['model'])
    return model


if __name__ == '__main__':
    import time
    from fvcore.nn import FlopCountAnalysis
    from fvcore.nn import flop_count_table
    import numpy as np

    seed = 4217
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    num_frames = 16

    model = mae_g14_hybrid(all_frames=num_frames, tubelet_size=2).cuda().half()
    # print(model)

    flops = FlopCountAnalysis(model, torch.rand(1, 3, num_frames, 224, 224).cuda().half())
    s = time.time()
    print(flop_count_table(flops, max_depth=1))
    print(time.time()-s)
    # print(model(torch.rand(1, 3, num_frames, 224, 224)).shape)