Spaces:
Sleeping
Sleeping
File size: 36,168 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 |
import io
import os
import math
import time
import json
from collections import defaultdict, deque
import datetime
import numpy as np
from timm.utils import get_state_dict
from torch.utils.data._utils.collate import default_collate
from pathlib import Path
import subprocess
import torch
import torch.distributed as dist
from torch._six import inf
import random
from tensorboardX import SummaryWriter
import fnmatch
try:
from petrel_client.client import Client
has_client = True
client = Client('~/petreloss.conf')
except ImportError:
has_client = False
client = None
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if v is None:
continue
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ''
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f} (max: {max:.4f})')
data_time = SmoothedValue(fmt='{avg:.4f} (max: {max:.4f})')
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
log_msg = [
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
]
if torch.cuda.is_available():
log_msg.append('max mem: {memory:.0f}')
log_msg = self.delimiter.join(log_msg)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
else:
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {} ({:.4f} s / it)'.format(
header, total_time_str, total_time / len(iterable)))
def log_every_joint(self, video_loader, image_loader, print_freq, header=None, image_num_ratio=1.0):
# prepare random squeue
total_len = int(len(video_loader) + len(image_loader) * image_num_ratio)
random_sequence = np.arange(total_len)
np.random.shuffle(random_sequence)
loader_list = [iter(video_loader), iter(image_loader)]
# prepare print template
if not header:
header = ''
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f} (max: {max:.4f})')
data_time = SmoothedValue(fmt='{avg:.4f} (max: {max:.4f})')
space_fmt = ':' + str(len(str(total_len))) + 'd'
log_msg = [
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
]
if torch.cuda.is_available():
log_msg.append('max mem: {memory:.0f}')
log_msg = self.delimiter.join(log_msg)
MB = 1024.0 * 1024.0
for i, random_num in enumerate(random_sequence):
# randomly selct image or video
if random_num < len(video_loader):
loader_idx = 0
use_image = False
mark = '<<VIDEO BATCH>>\t'
else:
loader_idx = 1
use_image = True
mark = '<<IMAGE BATCH>>\t'
data_time.update(time.time() - end)
yield (next(loader_list[loader_idx]), use_image)
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == total_len - 1:
eta_seconds = iter_time.global_avg * (total_len - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(mark, log_msg.format(
i, total_len, eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
else:
print(mark, log_msg.format(
i, total_len, eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {} ({:.4f} s / it)'.format(
header, total_time_str, total_time / total_len))
class TensorboardLogger(object):
def __init__(self, log_dir):
self.writer = SummaryWriter(logdir=log_dir)
self.step = 0
def set_step(self, step=None):
if step is not None:
self.step = step
else:
self.step += 1
def update(self, head='scalar', step=None, **kwargs):
for k, v in kwargs.items():
if v is None:
continue
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.writer.add_scalar(head + "/" + k, v, self.step if step is None else step)
def flush(self):
self.writer.flush()
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2**32
np.random.seed(worker_seed)
random.seed(worker_seed)
def _load_checkpoint_for_ema(model_ema, checkpoint):
"""
Workaround for ModelEma._load_checkpoint to accept an already-loaded object
"""
mem_file = io.BytesIO()
torch.save(checkpoint, mem_file)
mem_file.seek(0)
model_ema._load_checkpoint(mem_file)
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def get_ceph_path(ckpt_path, ceph_args):
sub_path = str(ckpt_path).split(ceph_args['ckpt_path_split'])[-1]
ceph_ckpt_path = os.path.join(ceph_args['ceph_checkpoint_prefix'], sub_path)
return sub_path, ceph_ckpt_path
def save_on_master(obj, ckpt_path, ceph_args):
if is_main_process():
if ceph_args['use_ceph_checkpoint']:
assert has_client == True, "petrel_client is not installed!!!"
_, ceph_ckpt_path = get_ceph_path(ckpt_path, ceph_args)
with io.BytesIO() as f:
torch.save(obj, f)
client.put(ceph_ckpt_path, f.getvalue())
else:
torch.save(obj, ckpt_path)
def init_distributed_mode(args):
if args.dist_on_itp:
args.rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
os.environ['LOCAL_RANK'] = str(args.gpu)
os.environ['RANK'] = str(args.rank)
os.environ['WORLD_SIZE'] = str(args.world_size)
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = int(os.environ['SLURM_LOCALID'])
args.world_size = int(os.environ['SLURM_NTASKS'])
os.environ['RANK'] = str(args.rank)
os.environ['LOCAL_RANK'] = str(args.gpu)
os.environ['WORLD_SIZE'] = str(args.world_size)
node_list = os.environ['SLURM_NODELIST']
addr = subprocess.getoutput(
f'scontrol show hostname {node_list} | head -n1')
if 'MASTER_ADDR' not in os.environ:
os.environ['MASTER_ADDR'] = addr
elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK'])
else:
print('Not using distributed mode')
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = 'nccl'
print('| distributed init (rank {}): {}, gpu {}'.format(
args.rank, args.dist_url, args.gpu), flush=True)
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
torch.distributed.barrier()
# assert torch.distributed.is_initialized()
setup_for_distributed(args.rank == 0)
def load_state_dict(model, state_dict, prefix='', ignore_missing="relative_position_index"):
missing_keys = []
unexpected_keys = []
error_msgs = []
metadata = getattr(state_dict, '_metadata', None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
def load(module, prefix=''):
local_metadata = {} if metadata is None else metadata.get(
prefix[:-1], {})
module._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + '.')
load(model, prefix=prefix)
warn_missing_keys = []
ignore_missing_keys = []
for key in missing_keys:
keep_flag = True
for ignore_key in ignore_missing.split('|'):
if ignore_key in key:
keep_flag = False
break
if keep_flag:
warn_missing_keys.append(key)
else:
ignore_missing_keys.append(key)
missing_keys = warn_missing_keys
if len(missing_keys) > 0:
print("Weights of {} not initialized from pretrained model: {}".format(
model.__class__.__name__, missing_keys))
if len(unexpected_keys) > 0:
print("Weights from pretrained model not used in {}: {}".format(
model.__class__.__name__, unexpected_keys))
if len(ignore_missing_keys) > 0:
print("Ignored weights of {} not initialized from pretrained model: {}".format(
model.__class__.__name__, ignore_missing_keys))
if len(error_msgs) > 0:
print('\n'.join(error_msgs))
class NativeScalerWithGradNormCount:
state_dict_key = "amp_scaler"
def __init__(self):
self._scaler = torch.cuda.amp.GradScaler()
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
self._scaler.scale(loss).backward(create_graph=create_graph)
if update_grad:
if clip_grad is not None:
assert parameters is not None
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
else:
self._scaler.unscale_(optimizer)
norm = get_grad_norm_(parameters)
self._scaler.step(optimizer)
self._scaler.update()
else:
norm = None
return norm
def state_dict(self):
return self._scaler.state_dict()
def load_state_dict(self, state_dict):
self._scaler.load_state_dict(state_dict)
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = [p for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(parameters) == 0:
return torch.tensor(0.)
device = parameters[0].grad.device
if norm_type == inf:
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
else:
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
return total_norm
def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0,
start_warmup_value=0, warmup_steps=-1):
warmup_schedule = np.array([])
warmup_iters = int(warmup_epochs * niter_per_ep)
if warmup_steps > 0:
warmup_iters = warmup_steps
print("Set warmup steps = %d" % warmup_iters)
if warmup_epochs > 0:
warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters)
iters = np.arange(epochs * niter_per_ep - warmup_iters)
schedule = np.array(
[final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters])
schedule = np.concatenate((warmup_schedule, schedule))
assert len(schedule) == epochs * niter_per_ep
return schedule
def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, model_ema=None, model_name=None, ceph_args={'use_ceph_checkpoint': False}):
output_dir = Path(args.output_dir)
if model_name is None:
model_name = str(epoch)
if loss_scaler is not None:
checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % model_name)]
for checkpoint_path in checkpoint_paths:
to_save = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'scaler': loss_scaler.state_dict(),
'args': args,
}
if model_ema is not None:
to_save['model_ema'] = get_state_dict(model_ema)
save_on_master(to_save, checkpoint_path, ceph_args=ceph_args)
else:
client_state = {'epoch': epoch}
if model_ema is not None:
client_state['model_ema'] = get_state_dict(model_ema)
if ceph_args['use_ceph_checkpoint']:
sub_path, ceph_save_dir = get_ceph_path(output_dir, ceph_args)
local_save_dir = os.path.join('/dev/shm', sub_path)
Path(local_save_dir).mkdir(parents=True, exist_ok=True)
else:
local_save_dir = output_dir
tag_name = "checkpoint-%s" % model_name
model.save_checkpoint(save_dir=local_save_dir, tag=tag_name, client_state=client_state)
if ceph_args['use_ceph_checkpoint'] and ceph_args['local_rank'] == 0:
try:
assert has_client == True, "petrel_client is not installed!!!"
ckpt_shm_dir = os.path.join(local_save_dir, tag_name)
ckpt_petrel_dir = os.path.join(ceph_save_dir, tag_name)
for f_name in os.listdir(ckpt_shm_dir):
f_shm_path = os.path.join(ckpt_shm_dir, f_name)
f_petrel_path = os.path.join(ckpt_petrel_dir, f_name)
with open(f_shm_path, 'rb') as f:
print(f"Upload checkpoint at {f_petrel_path}", flush=True)
client.put(f_petrel_path, f)
print("Finish! Will remove the original files!", flush=True)
os.remove(f_shm_path)
except Exception as e:
print(f'Fail to upload or delete {f_shm_path} with error {e}')
def auto_load_model(args, model, model_without_ddp, optimizer, loss_scaler, model_ema=None, ceph_args={'use_ceph_checkpoint': False}):
output_dir = Path(args.output_dir)
if ceph_args['use_ceph_checkpoint']:
assert has_client == True, "petrel_client is not installed!!!"
sub_path, ceph_save_dir = get_ceph_path(output_dir, ceph_args)
if loss_scaler is not None:
# torch.amp
if args.test_best and args.eval:
args.resume = os.path.join(ceph_save_dir, 'checkpoint-best.pth')
elif check_ceph_exists(os.path.join(ceph_save_dir, 'checkpoint-latest.pth')):
args.resume = os.path.join(ceph_save_dir, 'checkpoint-latest.pth')
elif args.auto_resume and len(args.resume) == 0:
all_checkpoints = fnmatch.filter(list(client.list(ceph_save_dir)), 'checkpoint-*')
all_checkpoints = [
os.path.join(ceph_save_dir, ckpt_path)
for ckpt_path in all_checkpoints
]
latest_ckpt = -1
for ckpt in all_checkpoints:
t = ckpt.split('-')[-1].split('.')[0]
if t.isdigit():
latest_ckpt = max(int(t), latest_ckpt)
if latest_ckpt >= 0:
args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt)
print("Auto resume checkpoint: %s" % args.resume)
if args.resume:
with io.BytesIO(client.get(args.resume)) as buffer:
checkpoint = torch.load(buffer, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
print("Resume checkpoint %s" % args.resume)
if 'optimizer' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
args.start_epoch = checkpoint['epoch'] + 1
if hasattr(args, 'model_ema') and args.model_ema:
_load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
print("With optim & sched!")
else:
# deepspeed, only support '--auto_resume'.
flag = False
if args.test_best and args.eval:
try:
load_specific_ceph_model(
model, model_ema, args, sub_path, ceph_save_dir,
model_name='best', ceph_args=ceph_args
)
flag = True
except Exception:
print('No best model')
if not flag:
try:
load_specific_ceph_model(
model, model_ema, args, sub_path, ceph_save_dir,
model_name='latest', ceph_args=ceph_args
)
flag = True
except Exception:
print('No latest model')
if not flag:
try:
load_specific_ceph_model(
model, model_ema, args, sub_path, ceph_save_dir,
model_name='best', ceph_args=ceph_args
)
flag = True
except Exception:
print('No best model')
if not flag:
all_checkpoints = fnmatch.filter(list(client.list(ceph_save_dir)), 'checkpoint-*')
all_checkpoints = [
os.path.join(ceph_save_dir, ckpt_path)
for ckpt_path in all_checkpoints
]
latest_ckpt = -1
for ckpt in all_checkpoints:
t = ckpt.split('-')[-1].split('.')[0]
if t.isdigit():
latest_ckpt = max(int(t), latest_ckpt)
if latest_ckpt >= 0:
load_specific_ceph_model(
model, model_ema, args, sub_path, ceph_save_dir,
model_name=latest_ckpt, ceph_args=ceph_args
)
else:
print('No other models')
else:
if loss_scaler is not None:
# torch.amp
if args.test_best and args.eval:
args.resume = os.path.join(output_dir, 'checkpoint-best.pth')
elif os.path.exists(os.path.join(output_dir, 'checkpoint-latest.pth')):
args.resume = os.path.join(output_dir, 'checkpoint-latest.pth')
elif args.auto_resume and len(args.resume) == 0:
import glob
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth'))
latest_ckpt = -1
for ckpt in all_checkpoints:
t = ckpt.split('-')[-1].split('.')[0]
if t.isdigit():
latest_ckpt = max(int(t), latest_ckpt)
if latest_ckpt >= 0:
args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt)
print("Auto resume checkpoint: %s" % args.resume)
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
print("Resume checkpoint %s" % args.resume)
if 'optimizer' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
args.start_epoch = checkpoint['epoch'] + 1
if hasattr(args, 'model_ema') and args.model_ema:
_load_checkpoint_for_ema(model_ema, checkpoint['model_ema'])
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
print("With optim & sched!")
else:
# deepspeed, only support '--auto_resume'.
flag = False
if args.test_best and args.eval:
try:
load_specific_model(model, model_ema, args, output_dir, model_name='best')
flag = True
except Exception:
print('No best model')
if not flag:
try:
load_specific_model(model, model_ema, args, output_dir, model_name='latest')
flag = True
except Exception:
print('No latest model')
if not flag:
try:
load_specific_model(model, model_ema, args, output_dir, model_name='best')
flag = True
except Exception:
print('No best model')
if not flag:
import glob
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*'))
latest_ckpt = -1
for ckpt in all_checkpoints:
t = ckpt.split('-')[-1].split('.')[0]
if t.isdigit():
latest_ckpt = max(int(t), latest_ckpt)
if latest_ckpt >= 0:
load_specific_model(model, model_ema, args, output_dir, model_name=latest_ckpt)
else:
print('No other models')
def load_specific_model(model, model_ema, args, output_dir, model_name):
args.resume = os.path.join(output_dir, f'checkpoint-{model_name}')
print(f"Auto resume the {model_name} checkpoint")
_, client_states = model.load_checkpoint(args.output_dir, tag=f'checkpoint-{model_name}')
args.start_epoch = client_states['epoch'] + 1
if model_ema is not None:
if args.model_ema:
_load_checkpoint_for_ema(model_ema, client_states['model_ema'])
def check_ceph_exists(ceph_path):
return list(client.list(ceph_path)) > 0
def load_specific_ceph_model(model, model_ema, args, sub_path, ceph_save_dir, model_name, ceph_args):
tag_name = f'checkpoint-{model_name}'
args.resume = os.path.join(ceph_save_dir, tag_name)
print(f"Auto resume checkpoint: {args.resume}", flush=True)
shm_resume_dir = os.path.join('/dev/shm', sub_path, tag_name)
Path(shm_resume_dir).mkdir(parents=True, exist_ok=True)
if ceph_args['local_rank'] == 0:
for f_name in client.list(args.resume):
ckpt_petrel_path = os.path.join(args.resume, f_name)
ckpt_shm_path = os.path.join(shm_resume_dir, f_name)
print(f"Download model from {ckpt_petrel_path}", flush=True)
with open(ckpt_shm_path, 'wb') as f:
f.write(memoryview(client.get(ckpt_petrel_path)))
print("Finish downloading!", flush=True)
torch.distributed.barrier()
_, client_states = model.load_checkpoint(os.path.join('/dev/shm', sub_path), tag=f'checkpoint-{model_name}')
args.start_epoch = client_states['epoch'] + 1
if model_ema is not None:
if args.model_ema:
_load_checkpoint_for_ema(model_ema, client_states['model_ema'])
if ceph_args['local_rank'] == 0:
try:
for root, dirs, files in os.walk(shm_resume_dir):
for name in files:
os.remove(os.path.join(root, name))
for name in dirs:
os.rmdir(os.path.join(root, name))
os.rmdir(root)
except Exception as e:
print(f'Fail to clean {shm_resume_dir} with error {e}')
def create_ds_config(args):
args.deepspeed_config = os.path.join(args.output_dir, "deepspeed_config.json")
with open(args.deepspeed_config, mode="w") as writer:
ds_config = {
"train_batch_size": args.batch_size * args.update_freq * get_world_size(),
"train_micro_batch_size_per_gpu": args.batch_size,
"steps_per_print": 1000,
"optimizer": {
"type": "Adam",
"adam_w_mode": True,
"params": {
"lr": args.lr,
"weight_decay": args.weight_decay,
"bias_correction": True,
"betas": [
0.9,
0.999
],
"eps": 1e-8
}
},
"fp16": {
"enabled": True,
"loss_scale": 0,
"initial_scale_power": 7,
"loss_scale_window": 128
}
}
writer.write(json.dumps(ds_config, indent=2))
def create_internvideo2_lp_ds_config(args):
args.deepspeed_config = os.path.join(args.output_dir, "deepspeed_config.json")
with open(args.deepspeed_config, mode="w") as writer:
ds_config = {
"train_batch_size": args.batch_size * args.update_freq * get_world_size(),
"train_micro_batch_size_per_gpu": args.batch_size,
"steps_per_print": 1000,
"optimizer": {
"type": "Adam",
"adam_w_mode": True,
"params": {
"lr": args.lr,
"weight_decay": args.weight_decay,
"bias_correction": True,
"betas": [
args.opt_betas[0],
args.opt_betas[1]
],
"eps": args.opt_eps
}
},
"fp16": {
"enabled": not args.bf16,
"loss_scale": 0,
"initial_scale_power": 16,
"loss_scale_window": 500,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": args.bf16
},
}
if args.clip_grad is not None:
ds_config.update({'gradient_clipping': args.clip_grad})
writer.write(json.dumps(ds_config, indent=2))
# stolen from https://github.com/baaivision/EVA/blob/7389aeeec97c056fc8424fa6b78f35c6f1b07d0d/EVA-02/asuka/utils.py#L529C5-L599C54
def create_internvideo_ds_config(args):
args.deepspeed_config = os.path.join(args.output_dir, "deepspeed_config.json")
with open(args.deepspeed_config, mode="w") as writer:
ds_config = {
"train_batch_size": args.batch_size * args.update_freq * get_world_size(),
"train_micro_batch_size_per_gpu": args.batch_size,
"steps_per_print": args.steps_per_print,
"optimizer": {
"type": "Adam",
"adam_w_mode": True,
"params": {
"lr": args.lr,
"weight_decay": args.weight_decay,
"bias_correction": True,
"betas": [
args.opt_betas[0],
args.opt_betas[1]
],
"eps": args.opt_eps
}
},
"fp16": {
"enabled": not args.bf16,
"loss_scale": 0,
"initial_scale_power": 16,
"loss_scale_window": 500,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": args.bf16
},
"amp": {
"enabled": False,
"opt_level": "O2"
},
"flops_profiler": {
"enabled": True,
"profile_step": -1,
"module_depth": -1,
"top_modules": 1,
"detailed": True,
},
"zero_allow_untested_optimizer": True
}
if args.clip_grad is not None:
ds_config.update({'gradient_clipping': args.clip_grad})
if args.zero_stage == 1:
ds_config.update(
{
"zero_optimization": {
"stage": 1,
"reduce_bucket_size": 5e8,
}
}
)
elif args.zero_stage == 2:
ds_config.update(
{
"zero_optimization": {
"stage": 2,
"contiguous_gradients": True,
"overlap_comm": True,
"reduce_scatter": True,
"reduce_bucket_size": 5e8,
"allgather_bucket_size": 5e8,
"cpu_offload": False,
}
}
)
elif args.zero_stage == 3:
ds_config.update(
{
"zero_optimization": {
"stage": 3,
"contiguous_gradients": True,
"overlap_comm": True,
"reduce_scatter": True,
"reduce_bucket_size": 5e4,
"allgather_bucket_size": 5e4,
"cpu_offload": False,
"stage3_max_live_parameters": 1e5,
"stage3_max_reuse_distance": 1e5,
},
}
)
elif args.zero_stage > 3:
raise NotImplementedError()
opt_lower = args.opt.lower()
if opt_lower != 'adamw': del ds_config['optimizer']
writer.write(json.dumps(ds_config, indent=2))
def multiple_samples_collate(batch, fold=False):
"""
Collate function for repeated augmentation. Each instance in the batch has
more than one sample.
Args:
batch (tuple or list): data batch to collate.
Returns:
(tuple): collated data batch.
"""
inputs, labels, video_idx, extra_data = zip(*batch)
inputs = [item for sublist in inputs for item in sublist]
labels = [item for sublist in labels for item in sublist]
video_idx = [item for sublist in video_idx for item in sublist]
inputs, labels, video_idx, extra_data = (
default_collate(inputs),
default_collate(labels),
default_collate(video_idx),
default_collate(extra_data),
)
if fold:
return [inputs], labels, video_idx, extra_data
else:
return inputs, labels, video_idx, extra_data
def multiple_pretrain_samples_collate(batch, fold=False):
"""
Collate function for repeated augmentation. Each instance in the batch has
more than one sample.
Args:
batch (tuple or list): data batch to collate.
Returns:
(tuple): collated data batch.
"""
process_data, mask = zip(*batch)
process_data = [item for sublist in process_data for item in sublist]
mask = [item for sublist in mask for item in sublist]
process_data, mask = (
default_collate(process_data),
default_collate(mask),
)
if fold:
return [process_data], mask
else:
return process_data, mask |