Spaces:
Running
on
Zero
Running
on
Zero
File size: 25,911 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 |
from collections import OrderedDict, deque
from typing import Any, NamedTuple
import os
import dm_env
import numpy as np
from dm_env import StepType, specs
import gym
import torch
class ExtendedTimeStep(NamedTuple):
step_type: Any
reward: Any
discount: Any
observation: Any
action: Any
def first(self):
return self.step_type == StepType.FIRST
def mid(self):
return self.step_type == StepType.MID
def last(self):
return self.step_type == StepType.LAST
def __getitem__(self, attr):
return getattr(self, attr)
class FlattenJacoObservationWrapper(dm_env.Environment):
def __init__(self, env):
self._env = env
self._obs_spec = OrderedDict()
wrapped_obs_spec = env.observation_spec().copy()
if 'front_close' in wrapped_obs_spec:
spec = wrapped_obs_spec['front_close']
# drop batch dim
self._obs_spec['pixels'] = specs.BoundedArray(shape=spec.shape[1:],
dtype=spec.dtype,
minimum=spec.minimum,
maximum=spec.maximum,
name='pixels')
wrapped_obs_spec.pop('front_close')
for key, spec in wrapped_obs_spec.items():
assert spec.dtype == np.float64
assert type(spec) == specs.Array
dim = np.sum(
np.fromiter((int(np.prod(spec.shape))
for spec in wrapped_obs_spec.values()), np.int32))
self._obs_spec['observations'] = specs.Array(shape=(dim,),
dtype=np.float32,
name='observations')
def _transform_observation(self, time_step):
obs = OrderedDict()
if 'front_close' in time_step.observation:
pixels = time_step.observation['front_close']
time_step.observation.pop('front_close')
pixels = np.squeeze(pixels)
obs['pixels'] = pixels
features = []
for feature in time_step.observation.values():
features.append(feature.ravel())
obs['observations'] = np.concatenate(features, axis=0)
return time_step._replace(observation=obs)
def reset(self):
time_step = self._env.reset()
return self._transform_observation(time_step)
def step(self, action):
time_step = self._env.step(action)
return self._transform_observation(time_step)
def observation_spec(self):
return self._obs_spec
def action_spec(self):
return self._env.action_spec()
def __getattr__(self, name):
return getattr(self._env, name)
class ActionRepeatWrapper(dm_env.Environment):
def __init__(self, env, num_repeats):
self._env = env
self._num_repeats = num_repeats
def step(self, action):
reward = 0.0
discount = 1.0
for i in range(self._num_repeats):
time_step = self._env.step(action)
reward += (time_step.reward or 0.0) * discount
discount *= time_step.discount
if time_step.last():
break
return time_step._replace(reward=reward, discount=discount)
def observation_spec(self):
return self._env.observation_spec()
def action_spec(self):
return self._env.action_spec()
def reset(self):
return self._env.reset()
def __getattr__(self, name):
return getattr(self._env, name)
class FramesWrapper(dm_env.Environment):
def __init__(self, env, num_frames=1, pixels_key='pixels'):
self._env = env
self._num_frames = num_frames
self._frames = deque([], maxlen=num_frames)
self._pixels_key = pixels_key
wrapped_obs_spec = env.observation_spec()
assert pixels_key in wrapped_obs_spec
pixels_shape = wrapped_obs_spec[pixels_key].shape
# remove batch dim
if len(pixels_shape) == 4:
pixels_shape = pixels_shape[1:]
self._obs_spec = specs.BoundedArray(shape=np.concatenate(
[[pixels_shape[2] * num_frames], pixels_shape[:2]], axis=0),
dtype=np.uint8,
minimum=0,
maximum=255,
name='observation')
def _transform_observation(self, time_step):
assert len(self._frames) == self._num_frames
obs = np.concatenate(list(self._frames), axis=0)
return time_step._replace(observation=obs)
def _extract_pixels(self, time_step):
pixels = time_step.observation[self._pixels_key]
# remove batch dim
if len(pixels.shape) == 4:
pixels = pixels[0]
return pixels.transpose(2, 0, 1).copy()
def reset(self):
time_step = self._env.reset()
pixels = self._extract_pixels(time_step)
for _ in range(self._num_frames):
self._frames.append(pixels)
return self._transform_observation(time_step)
def step(self, action):
time_step = self._env.step(action)
pixels = self._extract_pixels(time_step)
self._frames.append(pixels)
return self._transform_observation(time_step)
def observation_spec(self):
return self._obs_spec
def action_spec(self):
return self._env.action_spec()
def __getattr__(self, name):
return getattr(self._env, name)
class OneHotAction(gym.Wrapper):
def __init__(self, env):
assert isinstance(env.action_space, gym.spaces.Discrete)
super().__init__(env)
self._random = np.random.RandomState()
shape = (self.env.action_space.n,)
space = gym.spaces.Box(low=0, high=1, shape=shape, dtype=np.float32)
space.discrete = True
self.action_space = space
def step(self, action):
index = np.argmax(action).astype(int)
reference = np.zeros_like(action)
reference[index] = 1
if not np.allclose(reference, action):
raise ValueError(f"Invalid one-hot action:\n{action}")
return self.env.step(index)
def reset(self):
return self.env.reset()
def _sample_action(self):
actions = self.env.action_space.n
index = self._random.randint(0, actions)
reference = np.zeros(actions, dtype=np.float32)
reference[index] = 1.0
return reference
class ActionDTypeWrapper(dm_env.Environment):
def __init__(self, env, dtype):
self._env = env
wrapped_action_spec = env.action_spec()
self._action_spec = specs.BoundedArray(wrapped_action_spec.shape,
dtype,
wrapped_action_spec.minimum,
wrapped_action_spec.maximum,
'action')
def step(self, action):
action = action.astype(self._env.action_spec().dtype)
return self._env.step(action)
def observation_spec(self):
return self._env.observation_spec()
def action_spec(self):
return self._action_spec
def reset(self):
return self._env.reset()
def __getattr__(self, name):
return getattr(self._env, name)
class ObservationDTypeWrapper(dm_env.Environment):
def __init__(self, env, dtype):
self._env = env
self._dtype = dtype
wrapped_obs_spec = env.observation_spec()['observations']
self._obs_spec = specs.Array(wrapped_obs_spec.shape, dtype,
'observation')
def _transform_observation(self, time_step):
obs = time_step.observation['observations'].astype(self._dtype)
return time_step._replace(observation=obs)
def reset(self):
time_step = self._env.reset()
return self._transform_observation(time_step)
def step(self, action):
time_step = self._env.step(action)
return self._transform_observation(time_step)
def observation_spec(self):
return self._obs_spec
def action_spec(self):
return self._env.action_spec()
def __getattr__(self, name):
return getattr(self._env, name)
class ExtendedTimeStepWrapper(dm_env.Environment):
def __init__(self, env):
self._env = env
def reset(self):
time_step = self._env.reset()
return self._augment_time_step(time_step)
def step(self, action):
time_step = self._env.step(action)
return self._augment_time_step(time_step, action)
def _augment_time_step(self, time_step, action=None):
if action is None:
action_spec = self.action_spec()
action = np.zeros(action_spec.shape, dtype=action_spec.dtype)
return ExtendedTimeStep(observation=time_step.observation,
step_type=time_step.step_type,
action=action,
reward=time_step.reward or 0.0,
discount=time_step.discount or 1.0)
def observation_spec(self):
return self._env.observation_spec()
def action_spec(self):
return self._env.action_spec()
def __getattr__(self, name):
return getattr(self._env, name)
class DMC:
def __init__(self, env):
self._env = env
self._ignored_keys = []
def step(self, action):
time_step = self._env.step(action)
assert time_step.discount in (0, 1)
obs = {
'reward': time_step.reward,
'is_first': False,
'is_last': time_step.last(),
'is_terminal': time_step.discount == 0,
'observation': time_step.observation,
'action' : action,
'discount': time_step.discount
}
return time_step, obs
def reset(self):
time_step = self._env.reset()
obs = {
'reward': 0.0,
'is_first': True,
'is_last': False,
'is_terminal': False,
'observation': time_step.observation,
'action' : np.zeros_like(self.act_space['action'].sample()),
'discount': time_step.discount
}
return time_step, obs
def __getattr__(self, name):
if name == 'obs_space':
obs_spaces = {
'observation': self._env.observation_spec(),
'is_first': gym.spaces.Box(0, 1, (), dtype=bool),
'is_last': gym.spaces.Box(0, 1, (), dtype=bool),
'is_terminal': gym.spaces.Box(0, 1, (), dtype=bool),
}
return obs_spaces
if name == 'act_space':
spec = self._env.action_spec()
action = gym.spaces.Box((spec.minimum)*spec.shape[0], (spec.maximum)*spec.shape[0], shape=spec.shape, dtype=np.float32)
act_space = {'action': action}
return act_space
return getattr(self._env, name)
class OneHotAction(gym.Wrapper):
def __init__(self, env):
assert isinstance(env.action_space, gym.spaces.Discrete)
super().__init__(env)
self._random = np.random.RandomState()
shape = (self.env.action_space.n,)
space = gym.spaces.Box(low=0, high=1, shape=shape, dtype=np.float32)
space.discrete = True
self.action_space = space
def step(self, action):
index = np.argmax(action).astype(int)
reference = np.zeros_like(action)
reference[index] = 1
if not np.allclose(reference, action):
raise ValueError(f"Invalid one-hot action:\n{action}")
return self.env.step(index)
def reset(self):
return self.env.reset()
def _sample_action(self):
actions = self.env.action_space.n
index = self._random.randint(0, actions)
reference = np.zeros(actions, dtype=np.float32)
reference[index] = 1.0
return reference
class KitchenWrapper:
def __init__(
self,
name,
seed=0,
action_repeat=1,
size=(64, 64),
):
import envs.kitchen_extra as kitchen_extra
self._env = {
'microwave' : kitchen_extra.KitchenMicrowaveV0,
'kettle' : kitchen_extra.KitchenKettleV0,
'burner' : kitchen_extra.KitchenBurnerV0,
'light' : kitchen_extra.KitchenLightV0,
'hinge' : kitchen_extra.KitchenHingeV0,
'slide' : kitchen_extra.KitchenSlideV0,
'top_burner' : kitchen_extra.KitchenTopBurnerV0,
}[name]()
self._size = size
self._action_repeat = action_repeat
self._seed = seed
self._eval = False
def eval_mode(self,):
self._env.dense = False
self._eval = True
@property
def obs_space(self):
spaces = {
"observation": gym.spaces.Box(0, 255, (3,) + self._size, dtype=np.uint8),
"is_first": gym.spaces.Box(0, 1, (), dtype=bool),
"is_last": gym.spaces.Box(0, 1, (), dtype=bool),
"is_terminal": gym.spaces.Box(0, 1, (), dtype=bool),
"state": self._env.observation_space,
}
return spaces
@property
def act_space(self):
action = self._env.action_space
return {"action": action}
def step(self, action):
# assert np.isfinite(action["action"]).all(), action["action"]
reward = 0.0
for _ in range(self._action_repeat):
state, rew, done, info = self._env.step(action.copy())
reward += rew
obs = {
"reward": reward,
"is_first": False,
"is_last": False, # will be handled by timelimit wrapper
"is_terminal": False, # will be handled by per_episode function
"observation": info['images'].transpose(2, 0, 1).copy(),
"state": state.astype(np.float32),
'action' : action,
'discount' : 1
}
if self._eval:
obs['reward'] = min(obs['reward'], 1)
if obs['reward'] > 0:
obs['is_last'] = True
return dm_env.TimeStep(
step_type=dm_env.StepType.MID if not obs['is_last'] else dm_env.StepType.LAST,
reward=obs['reward'],
discount=1,
observation=obs['observation']), obs
def reset(self,):
state = self._env.reset()
obs = {
"reward": 0.0,
"is_first": True,
"is_last": False,
"is_terminal": False,
"observation": self.get_visual_obs(self._size),
"state": state.astype(np.float32),
'action' : np.zeros_like(self.act_space['action'].sample()),
'discount' : 1
}
return dm_env.TimeStep(
step_type=dm_env.StepType.FIRST,
reward=None,
discount=None,
observation=obs['observation']), obs
def __getattr__(self, name):
if name == 'obs_space':
return self.obs_space
if name == 'act_space':
return self.act_space
return getattr(self._env, name)
def get_visual_obs(self, resolution):
img = self._env.render(resolution=resolution,).transpose(2, 0, 1).copy()
return img
class ViClipWrapper:
def __init__(self, env, hd_rendering=False, device='cuda'):
self._env = env
try:
from tools.genrl_utils import viclip_global_instance
except:
from tools.genrl_utils import ViCLIPGlobalInstance
viclip_global_instance = ViCLIPGlobalInstance()
if not viclip_global_instance._instantiated:
viclip_global_instance.instantiate(device)
self.viclip_model = viclip_global_instance.viclip
self.n_frames = self.viclip_model.n_frames
self.viclip_emb_dim = viclip_global_instance.viclip_emb_dim
self.n_frames = self.viclip_model.n_frames
self.buffer = deque(maxlen=self.n_frames)
# NOTE: these are hardcoded for now, as they are the best settings
self.accumulate = True
self.accumulate_buffer = []
self.anticipate_conv1 = False
self.hd_rendering = hd_rendering
def hd_render(self, obs):
if not self.hd_rendering:
return obs['observation']
if self._env._domain_name in ['mw', 'kitchen', 'mujoco']:
return self.get_visual_obs((224,224,))
else:
render_kwargs = {**getattr(self, '_render_kwargs', {})}
render_kwargs.update({'width' : 224, 'height' : 224})
return self._env.physics.render(**render_kwargs).transpose(2,0,1)
def preprocess(self, x):
return x
def process_accumulate(self, process_at_once=4): # NOTE: this could be varied for increasing FPS, depending on the size of the GPU
self.accumulate = False
x = np.stack(self.accumulate_buffer, axis=0)
# Splitting in chunks
chunks = []
chunk_idxs = list(range(0, x.shape[0] + 1, process_at_once))
if chunk_idxs[-1] != x.shape[0]:
chunk_idxs.append(x.shape[0])
start = 0
for end in chunk_idxs[1:]:
embeds = self.clip_process(x[start:end], bypass=True)
chunks.append(embeds.cpu())
start = end
embeds = torch.cat(chunks, dim=0)
assert embeds.shape[0] == len(self.accumulate_buffer)
self.accumulate = True
self.accumulate_buffer = []
return [*embeds.cpu().numpy()], 'clip_video'
def process_episode(self, obs, process_at_once=8):
self.accumulate = False
sequences = []
for j in range(obs.shape[0] - self.n_frames + 1):
sequences.append(obs[j:j+self.n_frames].copy())
sequences = np.stack(sequences, axis=0)
idx_start = 0
clip_vid = []
for idx_end in range(process_at_once, sequences.shape[0] + process_at_once, process_at_once):
x = sequences[idx_start:idx_end]
with torch.no_grad(): # , torch.cuda.amp.autocast():
x = self.clip_process(x, bypass=True)
clip_vid.append(x)
idx_start = idx_end
if len(clip_vid) == 1: # process all at once
embeds = clip_vid[0]
else:
embeds = torch.cat(clip_vid, dim=0)
pad = torch.zeros( (self.n_frames - 1, *embeds.shape[1:]), device=embeds.device, dtype=embeds.dtype)
embeds = torch.cat([pad, embeds], dim=0)
assert embeds.shape[0] == obs.shape[0], f"Shapes are different {embeds.shape[0]} {obs.shape[0]}"
return embeds.cpu().numpy()
def get_sequence(self,):
return np.expand_dims(np.stack(self.buffer, axis=0), axis=0)
def clip_process(self, x, bypass=False):
if len(self.buffer) == self.n_frames or bypass:
if self.accumulate:
self.accumulate_buffer.append(self.preprocess(x)[0])
return torch.zeros(self.viclip_emb_dim)
with torch.no_grad():
B, n_frames, C, H, W = x.shape
obs = torch.from_numpy(x.copy().reshape(B * n_frames, C, H, W)).to(self.viclip_model.device)
processed_obs = self.viclip_model.preprocess_transf(obs / 255)
reshaped_obs = processed_obs.reshape(B, n_frames, 3,processed_obs.shape[-2],processed_obs.shape[-1])
video_embed = self.viclip_model.get_vid_features(reshaped_obs)
return video_embed.detach()
else:
return torch.zeros(self.viclip_emb_dim)
def step(self, action):
ts, obs = self._env.step(action)
self.buffer.append(self.hd_render(obs))
obs['clip_video'] = self.clip_process(self.get_sequence()).cpu().numpy()
return ts, obs
def reset(self,):
# Important to reset the buffer
self.buffer = deque(maxlen=self.n_frames)
ts, obs = self._env.reset()
self.buffer.append(self.hd_render(obs))
obs['clip_video'] = self.clip_process(self.get_sequence()).cpu().numpy()
return ts, obs
def __getattr__(self, name):
if name == 'obs_space':
space = self._env.obs_space
space['clip_video'] = gym.spaces.Box(-np.inf, np.inf, (self.viclip_emb_dim,), dtype=np.float32)
return space
return getattr(self._env, name)
class TimeLimit:
def __init__(self, env, duration):
self._env = env
self._duration = duration
self._step = None
def __getattr__(self, name):
if name.startswith('__'):
raise AttributeError(name)
return getattr(self._env, name)
def step(self, action):
assert self._step is not None, 'Must reset environment.'
ts, obs = self._env.step(action)
self._step += 1
if self._duration and self._step >= self._duration:
ts = dm_env.TimeStep(dm_env.StepType.LAST, ts.reward, ts.discount, ts.observation)
obs['is_last'] = True
self._step = None
return ts, obs
def reset(self):
self._step = 0
return self._env.reset()
def reset_with_task_id(self, task_id):
self._step = 0
return self._env.reset_with_task_id(task_id)
class ClipActionWrapper:
def __init__(self, env, low=-1.0, high=1.0):
self._env = env
self._low = low
self._high = high
def __getattr__(self, name):
if name.startswith('__'):
raise AttributeError(name)
return getattr(self._env, name)
def step(self, action):
clipped_action = np.clip(action, self._low, self._high)
return self._env.step(clipped_action)
def reset(self):
self._step = 0
return self._env.reset()
def reset_with_task_id(self, task_id):
self._step = 0
return self._env.reset_with_task_id(task_id)
class NormalizeAction:
def __init__(self, env, key='action'):
self._env = env
self._key = key
space = env.act_space[key]
self._mask = np.isfinite(space.low) & np.isfinite(space.high)
self._low = np.where(self._mask, space.low, -1)
self._high = np.where(self._mask, space.high, 1)
def __getattr__(self, name):
if name.startswith('__'):
raise AttributeError(name)
try:
return getattr(self._env, name)
except AttributeError:
raise ValueError(name)
@property
def act_space(self):
low = np.where(self._mask, -np.ones_like(self._low), self._low)
high = np.where(self._mask, np.ones_like(self._low), self._high)
space = gym.spaces.Box(low, high, dtype=np.float32)
return {**self._env.act_space, self._key: space}
def step(self, action):
orig = (action[self._key] + 1) / 2 * (self._high - self._low) + self._low
orig = np.where(self._mask, orig, action[self._key])
return self._env.step({**action, self._key: orig})
def _make_jaco(obs_type, domain, task, action_repeat, seed, img_size,):
import envs.custom_dmc_tasks as cdmc
env = cdmc.make_jaco(task, obs_type, seed, img_size,)
env = ActionDTypeWrapper(env, np.float32)
env = ActionRepeatWrapper(env, action_repeat)
env = FlattenJacoObservationWrapper(env)
env._size = (img_size, img_size)
return env
def _make_dmc(obs_type, domain, task, action_repeat, seed, img_size,):
visualize_reward = False
from dm_control import manipulation, suite
import envs.custom_dmc_tasks as cdmc
if (domain, task) in suite.ALL_TASKS:
env = suite.load(domain,
task,
task_kwargs=dict(random=seed),
environment_kwargs=dict(flat_observation=True),
visualize_reward=visualize_reward)
else:
env = cdmc.make(domain,
task,
task_kwargs=dict(random=seed),
environment_kwargs=dict(flat_observation=True),
visualize_reward=visualize_reward)
env = ActionDTypeWrapper(env, np.float32)
env = ActionRepeatWrapper(env, action_repeat)
if obs_type == 'pixels':
from dm_control.suite.wrappers import pixels
# zoom in camera for quadruped
camera_id = dict(locom_rodent=1,quadruped=2).get(domain, 0)
render_kwargs = dict(height=img_size, width=img_size, camera_id=camera_id)
env = pixels.Wrapper(env,
pixels_only=True,
render_kwargs=render_kwargs)
env._size = (img_size, img_size)
env._camera = camera_id
return env
def make(name, obs_type, action_repeat, seed, img_size=64, viclip_encode=False, clip_hd_rendering=False, device='cuda'):
assert obs_type in ['states', 'pixels']
domain, task = name.split('_', 1)
if domain == 'kitchen':
env = TimeLimit(KitchenWrapper(task, seed=seed, action_repeat=action_repeat, size=(img_size,img_size)), 280 // action_repeat)
else:
os.environ['PYOPENGL_PLATFORM'] = 'egl'
os.environ['MUJOCO_GL'] = 'egl'
domain = dict(cup='ball_in_cup', point='point_mass').get(domain, domain)
make_fn = _make_jaco if domain == 'jaco' else _make_dmc
env = make_fn(obs_type, domain, task, action_repeat, seed, img_size,)
if obs_type == 'pixels':
env = FramesWrapper(env,)
else:
env = ObservationDTypeWrapper(env, np.float32)
from dm_control.suite.wrappers import action_scale
env = action_scale.Wrapper(env, minimum=-1.0, maximum=+1.0)
env = ExtendedTimeStepWrapper(env)
env = DMC(env)
env._domain_name = domain
if isinstance(env.act_space['action'], gym.spaces.Box):
env = ClipActionWrapper(env,)
if viclip_encode:
env = ViClipWrapper(env, hd_rendering=clip_hd_rendering, device=device)
return env
|