Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,397 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
# Copyright 2019 The dm_control Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""A task where the goal is to move the hand close to a target prop or site."""
import collections
from dm_control import composer
from dm_control.composer import initializers
from dm_control.composer.observation import observable
from dm_control.composer.variation import distributions
from dm_control.entities import props
from dm_control.manipulation.shared import arenas
from dm_control.manipulation.shared import cameras
from dm_control.manipulation.shared import constants
from dm_control.manipulation.shared import observations
from dm_control.manipulation.shared import registry
from dm_control.manipulation.shared import robots
from dm_control.manipulation.shared import tags
from dm_control.manipulation.shared import workspaces
from dm_control.utils import rewards
import numpy as np
_ReachWorkspace = collections.namedtuple(
'_ReachWorkspace', ['target_bbox', 'tcp_bbox', 'arm_offset'])
# Ensures that the props are not touching the table before settling.
_PROP_Z_OFFSET = 0.001
_DUPLO_WORKSPACE = _ReachWorkspace(
target_bbox=workspaces.BoundingBox(
lower=(-0.1, -0.1, _PROP_Z_OFFSET),
upper=(0.1, 0.1, _PROP_Z_OFFSET)),
tcp_bbox=workspaces.BoundingBox(
lower=(-0.1, -0.1, 0.2),
upper=(0.1, 0.1, 0.4)),
arm_offset=robots.ARM_OFFSET)
_SITE_WORKSPACE = _ReachWorkspace(
target_bbox=workspaces.BoundingBox(
lower=(-0.2, -0.2, 0.02),
upper=(0.2, 0.2, 0.4)),
tcp_bbox=workspaces.BoundingBox(
lower=(-0.2, -0.2, 0.02),
upper=(0.2, 0.2, 0.4)),
arm_offset=robots.ARM_OFFSET)
_TARGET_RADIUS = 0.05
_TIME_LIMIT = 10
TASKS = {
'reach_top_left': workspaces.BoundingBox(
lower=(-0.09, 0.09, _PROP_Z_OFFSET),
upper=(-0.09, 0.09, _PROP_Z_OFFSET)),
'reach_top_right': workspaces.BoundingBox(
lower=(0.09, 0.09, _PROP_Z_OFFSET),
upper=(0.09, 0.09, _PROP_Z_OFFSET)),
'reach_bottom_left': workspaces.BoundingBox(
lower=(-0.09, -0.09, _PROP_Z_OFFSET),
upper=(-0.09, -0.09, _PROP_Z_OFFSET)),
'reach_bottom_right': workspaces.BoundingBox(
lower=(0.09, -0.09, _PROP_Z_OFFSET),
upper=(0.09, -0.09, _PROP_Z_OFFSET)),
}
def make(task_id, obs_type, seed, img_size=64,):
obs_settings = observations.VISION if obs_type == 'pixels' else observations.PERFECT_FEATURES
obs_settings = obs_settings._replace(camera=obs_settings[-1]._replace(width=img_size))
obs_settings = obs_settings._replace(camera=obs_settings[-1]._replace(height=img_size))
if obs_type == 'states':
global _TIME_LIMIT
_TIME_LIMIT = 10.04
# Note: Adding this fixes the problem of having 249 steps with action repeat = 1
task = _reach(task_id, obs_settings=obs_settings, use_site=False)
return composer.Environment(task, time_limit=_TIME_LIMIT, random_state=seed)
class MTReach(composer.Task):
"""Bring the hand close to a target prop or site."""
def __init__(
self, task_id, arena, arm, hand, prop, obs_settings, workspace, control_timestep):
"""Initializes a new `Reach` task.
Args:
arena: `composer.Entity` instance.
arm: `robot_base.RobotArm` instance.
hand: `robot_base.RobotHand` instance.
prop: `composer.Entity` instance specifying the prop to reach to, or None
in which case the target is a fixed site whose position is specified by
the workspace.
obs_settings: `observations.ObservationSettings` instance.
workspace: `_ReachWorkspace` specifying the placement of the prop and TCP.
control_timestep: Float specifying the control timestep in seconds.
"""
self._task_id = task_id
self._arena = arena
self._arm = arm
self._hand = hand
self._arm.attach(self._hand)
self._arena.attach_offset(self._arm, offset=workspace.arm_offset)
self.control_timestep = control_timestep
self._tcp_initializer = initializers.ToolCenterPointInitializer(
self._hand, self._arm,
position=distributions.Uniform(*workspace.tcp_bbox),
quaternion=workspaces.DOWN_QUATERNION)
# Add custom camera observable.
self._task_observables = cameras.add_camera_observables(
arena, obs_settings, cameras.FRONT_CLOSE)
target_pos_distribution = distributions.Uniform(*TASKS[task_id])
self._prop = prop
if prop:
# The prop itself is used to visualize the target location.
self._make_target_site(parent_entity=prop, visible=False)
self._target = self._arena.add_free_entity(prop)
self._prop_placer = initializers.PropPlacer(
props=[prop],
position=target_pos_distribution,
quaternion=workspaces.uniform_z_rotation,
settle_physics=True)
else:
self._target = self._make_target_site(parent_entity=arena, visible=True)
self._target_placer = target_pos_distribution
# Commented to match EXORL
# obs = observable.MJCFFeature('pos', self._target)
# obs.configure(**obs_settings.prop_pose._asdict())
# self._task_observables['target_position'] = obs
# Add sites for visualizing the prop and target bounding boxes.
workspaces.add_bbox_site(
body=self.root_entity.mjcf_model.worldbody,
lower=workspace.tcp_bbox.lower, upper=workspace.tcp_bbox.upper,
rgba=constants.GREEN, name='tcp_spawn_area')
workspaces.add_bbox_site(
body=self.root_entity.mjcf_model.worldbody,
lower=workspace.target_bbox.lower, upper=workspace.target_bbox.upper,
rgba=constants.BLUE, name='target_spawn_area')
def _make_target_site(self, parent_entity, visible):
return workspaces.add_target_site(
body=parent_entity.mjcf_model.worldbody,
radius=_TARGET_RADIUS, visible=visible,
rgba=constants.RED, name='target_site')
@property
def root_entity(self):
return self._arena
@property
def arm(self):
return self._arm
@property
def hand(self):
return self._hand
@property
def task_observables(self):
return self._task_observables
def get_reward(self, physics):
hand_pos = physics.bind(self._hand.tool_center_point).xpos
target_pos = physics.bind(self._target).xpos
# This was used exceptionally for the PT reward predictor experiments
# target_pos = distributions.Uniform(*TASKS[self._task_id])()
distance = np.linalg.norm(hand_pos - target_pos)
return rewards.tolerance(
distance, bounds=(0, _TARGET_RADIUS), margin=_TARGET_RADIUS)
def initialize_episode(self, physics, random_state):
self._hand.set_grasp(physics, close_factors=random_state.uniform())
self._tcp_initializer(physics, random_state)
if self._prop:
self._prop_placer(physics, random_state)
else:
physics.bind(self._target).pos = (
self._target_placer(random_state=random_state))
def _reach(task_id, obs_settings, use_site):
"""Configure and instantiate a `Reach` task.
Args:
obs_settings: An `observations.ObservationSettings` instance.
use_site: Boolean, if True then the target will be a fixed site, otherwise
it will be a moveable Duplo brick.
Returns:
An instance of `reach.Reach`.
"""
arena = arenas.Standard()
arm = robots.make_arm(obs_settings=obs_settings)
hand = robots.make_hand(obs_settings=obs_settings)
if use_site:
workspace = _SITE_WORKSPACE
prop = None
else:
workspace = _DUPLO_WORKSPACE
prop = props.Duplo(observable_options=observations.make_options(
obs_settings, observations.FREEPROP_OBSERVABLES))
task = MTReach(task_id, arena=arena, arm=arm, hand=hand, prop=prop,
obs_settings=obs_settings,
workspace=workspace,
control_timestep=constants.CONTROL_TIMESTEP)
return task |