File size: 8,397 Bytes
2d9a728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Copyright 2019 The dm_control Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or  implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

"""A task where the goal is to move the hand close to a target prop or site."""

import collections

from dm_control import composer
from dm_control.composer import initializers
from dm_control.composer.observation import observable
from dm_control.composer.variation import distributions
from dm_control.entities import props
from dm_control.manipulation.shared import arenas
from dm_control.manipulation.shared import cameras
from dm_control.manipulation.shared import constants
from dm_control.manipulation.shared import observations
from dm_control.manipulation.shared import registry
from dm_control.manipulation.shared import robots
from dm_control.manipulation.shared import tags
from dm_control.manipulation.shared import workspaces
from dm_control.utils import rewards
import numpy as np


_ReachWorkspace = collections.namedtuple(
    '_ReachWorkspace', ['target_bbox', 'tcp_bbox', 'arm_offset'])

# Ensures that the props are not touching the table before settling.
_PROP_Z_OFFSET = 0.001

_DUPLO_WORKSPACE = _ReachWorkspace(
    target_bbox=workspaces.BoundingBox(
        lower=(-0.1, -0.1, _PROP_Z_OFFSET),
        upper=(0.1, 0.1, _PROP_Z_OFFSET)),
    tcp_bbox=workspaces.BoundingBox(
        lower=(-0.1, -0.1, 0.2),
        upper=(0.1, 0.1, 0.4)),
    arm_offset=robots.ARM_OFFSET)

_SITE_WORKSPACE = _ReachWorkspace(
    target_bbox=workspaces.BoundingBox(
        lower=(-0.2, -0.2, 0.02),
        upper=(0.2, 0.2, 0.4)),
    tcp_bbox=workspaces.BoundingBox(
        lower=(-0.2, -0.2, 0.02),
        upper=(0.2, 0.2, 0.4)),
    arm_offset=robots.ARM_OFFSET)

_TARGET_RADIUS = 0.05
_TIME_LIMIT = 10

TASKS = {
    'reach_top_left':  workspaces.BoundingBox(
        lower=(-0.09, 0.09, _PROP_Z_OFFSET),
        upper=(-0.09, 0.09, _PROP_Z_OFFSET)),
    'reach_top_right': workspaces.BoundingBox(
        lower=(0.09, 0.09, _PROP_Z_OFFSET),
        upper=(0.09, 0.09, _PROP_Z_OFFSET)),
    'reach_bottom_left': workspaces.BoundingBox(
        lower=(-0.09, -0.09, _PROP_Z_OFFSET),
        upper=(-0.09, -0.09, _PROP_Z_OFFSET)),
    'reach_bottom_right': workspaces.BoundingBox(
        lower=(0.09, -0.09, _PROP_Z_OFFSET),
        upper=(0.09, -0.09, _PROP_Z_OFFSET)),
}


def make(task_id, obs_type, seed, img_size=64,):
  obs_settings = observations.VISION if obs_type == 'pixels' else observations.PERFECT_FEATURES
  obs_settings = obs_settings._replace(camera=obs_settings[-1]._replace(width=img_size))
  obs_settings = obs_settings._replace(camera=obs_settings[-1]._replace(height=img_size))
  if obs_type == 'states':
    global _TIME_LIMIT
    _TIME_LIMIT = 10.04
    # Note: Adding this fixes the problem of having 249 steps with action repeat = 1
  task = _reach(task_id, obs_settings=obs_settings, use_site=False)
  return composer.Environment(task, time_limit=_TIME_LIMIT, random_state=seed)


class MTReach(composer.Task):
  """Bring the hand close to a target prop or site."""

  def __init__(
      self, task_id, arena, arm, hand, prop, obs_settings, workspace, control_timestep):
    """Initializes a new `Reach` task.

    Args:
      arena: `composer.Entity` instance.
      arm: `robot_base.RobotArm` instance.
      hand: `robot_base.RobotHand` instance.
      prop: `composer.Entity` instance specifying the prop to reach to, or None
        in which case the target is a fixed site whose position is specified by
        the workspace.
      obs_settings: `observations.ObservationSettings` instance.
      workspace: `_ReachWorkspace` specifying the placement of the prop and TCP.
      control_timestep: Float specifying the control timestep in seconds.
    """
    self._task_id = task_id
    self._arena = arena
    self._arm = arm
    self._hand = hand
    self._arm.attach(self._hand)
    self._arena.attach_offset(self._arm, offset=workspace.arm_offset)
    self.control_timestep = control_timestep
    self._tcp_initializer = initializers.ToolCenterPointInitializer(
        self._hand, self._arm,
        position=distributions.Uniform(*workspace.tcp_bbox),
        quaternion=workspaces.DOWN_QUATERNION)

    # Add custom camera observable.
    self._task_observables = cameras.add_camera_observables(
        arena, obs_settings, cameras.FRONT_CLOSE)

    target_pos_distribution = distributions.Uniform(*TASKS[task_id])
    self._prop = prop
    if prop:
      # The prop itself is used to visualize the target location.
      self._make_target_site(parent_entity=prop, visible=False)
      self._target = self._arena.add_free_entity(prop)
      self._prop_placer = initializers.PropPlacer(
          props=[prop],
          position=target_pos_distribution,
          quaternion=workspaces.uniform_z_rotation,
          settle_physics=True)
    else:
      self._target = self._make_target_site(parent_entity=arena, visible=True)
      self._target_placer = target_pos_distribution

      # Commented to match EXORL
      # obs = observable.MJCFFeature('pos', self._target)
      # obs.configure(**obs_settings.prop_pose._asdict())
      # self._task_observables['target_position'] = obs

    # Add sites for visualizing the prop and target bounding boxes.
    workspaces.add_bbox_site(
        body=self.root_entity.mjcf_model.worldbody,
        lower=workspace.tcp_bbox.lower, upper=workspace.tcp_bbox.upper,
        rgba=constants.GREEN, name='tcp_spawn_area')
    workspaces.add_bbox_site(
        body=self.root_entity.mjcf_model.worldbody,
        lower=workspace.target_bbox.lower, upper=workspace.target_bbox.upper,
        rgba=constants.BLUE, name='target_spawn_area')

  def _make_target_site(self, parent_entity, visible):
    return workspaces.add_target_site(
        body=parent_entity.mjcf_model.worldbody,
        radius=_TARGET_RADIUS, visible=visible,
        rgba=constants.RED, name='target_site')

  @property
  def root_entity(self):
    return self._arena

  @property
  def arm(self):
    return self._arm

  @property
  def hand(self):
    return self._hand

  @property
  def task_observables(self):
    return self._task_observables

  def get_reward(self, physics):
    hand_pos = physics.bind(self._hand.tool_center_point).xpos
    target_pos = physics.bind(self._target).xpos
    # This was used exceptionally for the PT reward predictor experiments 
    # target_pos = distributions.Uniform(*TASKS[self._task_id])()
    distance = np.linalg.norm(hand_pos - target_pos)
    return rewards.tolerance(
        distance, bounds=(0, _TARGET_RADIUS), margin=_TARGET_RADIUS)

  def initialize_episode(self, physics, random_state):
    self._hand.set_grasp(physics, close_factors=random_state.uniform())
    self._tcp_initializer(physics, random_state)
    if self._prop:
      self._prop_placer(physics, random_state)
    else:
      physics.bind(self._target).pos = (
          self._target_placer(random_state=random_state))


def _reach(task_id, obs_settings, use_site):
  """Configure and instantiate a `Reach` task.

  Args:
    obs_settings: An `observations.ObservationSettings` instance.
    use_site: Boolean, if True then the target will be a fixed site, otherwise
      it will be a moveable Duplo brick.

  Returns:
    An instance of `reach.Reach`.
  """
  arena = arenas.Standard()
  arm = robots.make_arm(obs_settings=obs_settings)
  hand = robots.make_hand(obs_settings=obs_settings)
  if use_site:
    workspace = _SITE_WORKSPACE
    prop = None
  else:
    workspace = _DUPLO_WORKSPACE
    prop = props.Duplo(observable_options=observations.make_options(
        obs_settings, observations.FREEPROP_OBSERVABLES))
  task = MTReach(task_id, arena=arena, arm=arm, hand=hand, prop=prop,
               obs_settings=obs_settings,
               workspace=workspace,
               control_timestep=constants.CONTROL_TIMESTEP)
  return task