Spaces:
Running
on
Zero
Running
on
Zero
File size: 28,336 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 |
# Copyright 2017 The dm_control Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Stickman Domain."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import os
import numpy as np
import types
from dm_control import mujoco
from dm_control.rl import control
from dm_control.suite import base
from dm_control.suite import common
from dm_control.suite.utils import randomizers
from dm_control.utils import containers
from dm_control.utils import rewards
from dm_control.utils import io as resources
from dm_control import suite
class StickmanYogaPoses:
lie_back = [ -1.2 , 0. , -1.57, 0, 0. , 0.0, 0, -0., 0.0]
lie_front = [-1.2, -0, 1.57, 0, 0, 0, 0, 0., 0.]
legs_up = [ -1.24 , 0. , -1.57, 1.57, 0. , 0.0, 1.57, -0., 0.0]
kneel = [ -0.5 , 0. , 0, 0, -1.57, -0.8, 1.57, -1.57, 0.0]
side_angle = [ -0.3 , 0. , 0.9, 0, 0, -0.7, 1.87, -1.07, 0.0]
stand_up = [-0.15, 0., 0.34, 0.74, -1.34, -0., 1.1, -0.66, -0.1]
lean_back = [-0.27, 0., -0.45, 0.22, -1.5, 0.86, 0.6, -0.8, -0.4]
boat = [ -1.04 , 0. , -0.8, 1.6, 0. , 0.0, 1.6, -0., 0.0]
bridge = [-1.1, 0., -2.2, -0.3, -1.5, 0., -0.3, -0.8, -0.4]
head_stand = [-1, 0., -3, 0.6, -1, -0.3, 0.9, -0.5, 0.3]
one_feet = [-0.2, 0., 0, 0.7, -1.34, 0.5, 1.5, -0.6, 0.1]
arabesque = [-0.34, 0., 1.57, 1.57, 0, 0., 0, -0., 0.]
# new
high_kick = [-0.165, 3.3 , 5.55 , 1.35 ,-0, +0.5 , -0.7, 0. , 0.2,]
splits = [-0.7, 0., 0.5, -0.7, -1. , 0, 1.75, 0., -0.45 ]
sit_knees = [-0.6, -0.2, 0.2, 0.95, -2.5, 0 , 0.95, -2.5, 0 ]
_DEFAULT_TIME_LIMIT = 25
_CONTROL_TIMESTEP = .025
# Minimal height of torso over foot above which stand reward is 1.
_STAND_HEIGHT = 1.15
# Horizontal speeds (meters/second) above which move reward is 1.
_WALK_SPEED = 1
_RUN_SPEED = 8
# Copied from walker:
_YOGA_HANDS_UP_HEIGHT = 1.75
_YOGA_STAND_HEIGHT = 1.0 # lower than stan height = 1.2
_YOGA_LIE_DOWN_HEIGHT = 0.1
_YOGA_LEGS_UP_HEIGHT = 1.1
_YOGA_FEET_UP_HEIGHT = 0.5
_YOGA_FEET_UP_LIE_DOWN_HEIGHT = 0.35
_YOGA_KNEE_HEIGHT = 0.25
_YOGA_KNEESTAND_HEIGHT = 0.75
_YOGA_SITTING_HEIGHT = 0.55
_YOGA_SITTING_LEGS_HEIGHT = 0.15
# speed from: https://github.com/rll-research/url_benchmark/blob/710c3eb/custom_dmc_tasks/py
_SPIN_SPEED = 5.0
#
_PUNCH_SPEED = 5.0
_PUNCH_DIST = 0.29
SUITE = containers.TaggedTasks()
def make(task,
task_kwargs=None,
environment_kwargs=None,
visualize_reward=False):
task_kwargs = task_kwargs or {}
if environment_kwargs is not None:
task_kwargs = task_kwargs.copy()
task_kwargs['environment_kwargs'] = environment_kwargs
env = SUITE[task](**task_kwargs)
env.task.visualize_reward = visualize_reward
return env
def get_model_and_assets():
"""Returns a tuple containing the model XML string and a dict of assets."""
root_dir = os.path.dirname(os.path.dirname(__file__))
xml = resources.GetResource(os.path.join(root_dir, 'custom_dmc_tasks', 'stickman.xml'))
return xml, common.ASSETS
@SUITE.add('custom')
def hands_up(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the hands_up task."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = Stickman(goal='hands_up', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs)
@SUITE.add('custom')
def boxing(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the boxing task."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = Stickman(goal='boxing', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs)
@SUITE.add('custom')
def arabesque(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Arabesque task."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = Stickman(goal='arabesque', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs)
@SUITE.add('custom')
def lying_down(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Lie Down task."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = Stickman(goal='lying_down', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs)
@SUITE.add('custom')
def legs_up(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Legs Up task."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = Stickman(goal='legs_up', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs)
@SUITE.add('custom')
def high_kick(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the High Kick task."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = Stickman(goal='high_kick', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs)
@SUITE.add('custom')
def one_foot(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the High Kick task."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = Stickman(goal='one_foot', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs)
@SUITE.add('custom')
def lunge_pose(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the High Kick task."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = Stickman(goal='lunge_pose', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs)
@SUITE.add('custom')
def sit_knees(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the High Kick task."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = Stickman(goal='sit_knees', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs)
@SUITE.add('custom')
def headstand(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Headstand task."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = Stickman(goal='flip', move_speed=0, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs)
@SUITE.add('custom')
def urlb_flip(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Flip task."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = Stickman(goal='urlb_flip', move_speed=_SPIN_SPEED, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs)
@SUITE.add('custom')
def flipping(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Flipping task."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = Stickman(goal='flipping', move_speed=2 * _RUN_SPEED, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs)
@SUITE.add('custom')
def flip(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Flip task."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = Stickman(goal='flip', move_speed=2 * _RUN_SPEED, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs)
@SUITE.add('custom')
def backflip(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Backflip task."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = Stickman(goal='flip', move_speed=-2 * _RUN_SPEED, random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs)
@SUITE.add('custom')
def stand(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Stand task."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = Stickman(move_speed=0, goal='stand', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs)
@SUITE.add('custom')
def walk(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Walk task."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = Stickman(move_speed=_WALK_SPEED, goal='walk', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs)
@SUITE.add('custom')
def run(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None):
"""Returns the Run task."""
physics = Physics.from_xml_string(*get_model_and_assets())
task = Stickman(move_speed=_RUN_SPEED, goal='run', random=random)
environment_kwargs = environment_kwargs or {}
return control.Environment(
physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP,
**environment_kwargs)
class Physics(mujoco.Physics):
"""Physics simulation with additional features for the stickman domain."""
def torso_upright(self):
"""Returns projection from z-axes of torso to the z-axes of world."""
return self.named.data.xmat['torso', 'zz']
def torso_height(self):
"""Returns the height of the torso."""
return self.named.data.xpos['torso', 'z']
def horizontal_velocity(self):
"""Returns the horizontal velocity of the center-of-mass."""
return self.named.data.sensordata['torso_subtreelinvel'][0]
def orientations(self):
"""Returns planar orientations of all bodies."""
return self.named.data.xmat[1:, ['xx', 'xz']].ravel()
def angmomentum(self):
"""Returns the angular momentum of torso of the stickman about Y axis."""
return self.named.data.subtree_angmom['torso'][1]
class Stickman(base.Task):
"""A planar stickman task."""
def __init__(self, move_speed=0., goal='walk', forward=True, random=None):
"""Initializes an instance of `Stickman`.
Args:
move_speed: A float. If this value is zero, reward is given simply for
standing up. Otherwise this specifies a target horizontal velocity for
the walking task.
random: Optional, either a `numpy.random.RandomState` instance, an
integer seed for creating a new `RandomState`, or None to select a seed
automatically (default).
"""
self._move_speed = move_speed
self._forward = 1 if forward else -1
self._goal = goal
super().__init__(random=random)
def _hands_up_reward(self, physics):
standing = self._stand_reward(physics)
left_hand_height = physics.named.data.xpos['left_hand', 'z']
right_hand_height = physics.named.data.xpos['right_hand', 'z']
hand_height = (left_hand_height + right_hand_height) / 2
hands_up = rewards.tolerance(hand_height,
bounds=(_YOGA_HANDS_UP_HEIGHT, float('inf')),
margin=_YOGA_HANDS_UP_HEIGHT/2)
return standing * hands_up
def _boxing_reward(self, physics):
# torso up, but lower than standing
# foot up, higher than torso
# foot down
standing = self._stand_reward(physics)
left_hand_velocity = abs(physics.named.data.subtree_linvel['left_hand'][0])
right_hand_velocity = abs(physics.named.data.subtree_linvel['right_hand'][0])
punch_reward = rewards.tolerance(
max(left_hand_velocity, right_hand_velocity),
bounds=(_PUNCH_SPEED, float('inf')),
margin=_PUNCH_SPEED / 2,
value_at_margin=0.5,
sigmoid='linear')
# left_hand_dist = physics.named.data.xpos['left_hand', 'x'] - physics.named.data.xpos['torso', 'x']
# right_hand_dist = physics.named.data.xpos['right_hand', 'x'] - physics.named.data.xpos['torso', 'x']
# punch_reward = rewards.tolerance(
# max(left_hand_dist, right_hand_dist),
# bounds=(_PUNCH_DIST, float('inf')),
# margin=_PUNCH_DIST / 2,)
return standing * punch_reward
def _arabesque_reward(self, physics):
# standing horizontal
# one foot up, same height as torso
# one foot down
standing = rewards.tolerance(physics.torso_height(),
bounds=(_YOGA_STAND_HEIGHT, float('inf')),
margin=_YOGA_STAND_HEIGHT/2)
left_foot_height = physics.named.data.xpos['left_foot', 'z']
right_foot_height = physics.named.data.xpos['right_foot', 'z']
max_foot = 'right_foot' if right_foot_height > left_foot_height else 'left_foot'
min_foot = 'right_foot' if right_foot_height <= left_foot_height else 'left_foot'
min_foot_height = physics.named.data.xpos[min_foot, 'z']
max_foot_height = physics.named.data.xpos[max_foot, 'z']
min_foot_down = rewards.tolerance(min_foot_height,
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
max_foot_up = rewards.tolerance(max_foot_height,
bounds=(_YOGA_STAND_HEIGHT, float('inf')),
margin=_YOGA_STAND_HEIGHT/2)
min_foot_x = physics.named.data.xpos[min_foot, 'x']
max_foot_x = physics.named.data.xpos[max_foot, 'x']
correct_foot_pose = 0.1 if max_foot_x > min_foot_x else 1.0
feet_pose = (min_foot_down + max_foot_up * 2) / 3
return standing * feet_pose * correct_foot_pose
def _lying_down_reward(self, physics):
# torso down and horizontal
# thigh and feet down
torso_down = rewards.tolerance(physics.torso_height(),
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
horizontal = 1 - abs(physics.torso_upright())
thigh_height = (physics.named.data.xpos['left_thigh', 'z'] + physics.named.data.xpos['right_thigh', 'z']) / 2
thigh_down = rewards.tolerance(thigh_height,
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
leg_height = (physics.named.data.xpos['left_leg', 'z'] + physics.named.data.xpos['right_leg', 'z']) / 2
leg_down = rewards.tolerance(leg_height,
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
feet_height = (physics.named.data.xpos['left_foot', 'z'] + physics.named.data.xpos['right_foot', 'z']) / 2
feet_down = rewards.tolerance(feet_height,
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
return (3*torso_down + horizontal + thigh_down + feet_down + leg_down) / 7
def _legs_up_reward(self, physics):
# torso down and horizontal
# legs up with thigh down
torso_down = rewards.tolerance(physics.torso_height(),
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
horizontal = 1 - abs(physics.torso_upright())
torso_down = (3*torso_down +horizontal) / 4
feet_height = (physics.named.data.xpos['left_foot', 'z'] + physics.named.data.xpos['right_foot', 'z']) / 2
feet_up = rewards.tolerance(feet_height,
bounds=(_YOGA_FEET_UP_LIE_DOWN_HEIGHT, float('inf')),
margin=_YOGA_FEET_UP_LIE_DOWN_HEIGHT/2)
return torso_down * feet_up
def _high_kick_reward(self, physics):
# torso up, but lower than standing
# foot up, higher than torso
# foot down
standing = rewards.tolerance(physics.torso_height(),
bounds=(_YOGA_STAND_HEIGHT, float('inf')),
margin=_YOGA_STAND_HEIGHT/2)
left_foot_height = physics.named.data.xpos['left_foot', 'z']
right_foot_height = physics.named.data.xpos['right_foot', 'z']
min_foot_height = min(left_foot_height, right_foot_height)
max_foot_height = max(left_foot_height, right_foot_height)
min_foot_down = rewards.tolerance(min_foot_height,
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
max_foot_up = rewards.tolerance(max_foot_height,
bounds=(_STAND_HEIGHT, float('inf')),
margin=_STAND_HEIGHT/2)
feet_pose = (3 * max_foot_up + min_foot_down) / 4
return standing * feet_pose
def _one_foot_reward(self, physics):
# torso up, standing
# foot up higher than foot down
standing = rewards.tolerance(physics.torso_height(),
bounds=(_YOGA_STAND_HEIGHT, float('inf')),
margin=_YOGA_STAND_HEIGHT/2)
left_foot_height = physics.named.data.xpos['left_foot', 'z']
right_foot_height = physics.named.data.xpos['right_foot', 'z']
min_foot_height = min(left_foot_height, right_foot_height)
max_foot_height = max(left_foot_height, right_foot_height)
min_foot_down = rewards.tolerance(min_foot_height,
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
max_foot_up = rewards.tolerance(max_foot_height,
bounds=(_YOGA_FEET_UP_HEIGHT, float('inf')),
margin=_YOGA_FEET_UP_HEIGHT/2)
return standing * max_foot_up * min_foot_down
def _lunge_pose_reward(self, physics):
# torso up, standing, but lower
# leg up higher than leg down
# horiontal thigh and leg
standing = rewards.tolerance(physics.torso_height(),
bounds=(_YOGA_KNEESTAND_HEIGHT, float('inf')),
margin=_YOGA_KNEESTAND_HEIGHT/2)
upright = (1 + physics.torso_upright()) / 2
torso = (3*standing + upright) / 4
left_leg_height = physics.named.data.xpos['left_leg', 'z']
right_leg_height = physics.named.data.xpos['right_leg', 'z']
min_leg_height = min(left_leg_height, right_leg_height)
max_leg_height = max(left_leg_height, right_leg_height)
min_leg_down = rewards.tolerance(min_leg_height,
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
max_leg_up = rewards.tolerance(max_leg_height,
bounds=(_YOGA_KNEE_HEIGHT, float('inf')),
margin=_YOGA_KNEE_HEIGHT / 2)
max_thigh = 'left_thigh' if max_leg_height == left_leg_height else 'right_thigh'
min_leg = 'left_leg' if min_leg_height == left_leg_height else 'right_leg'
max_thigh_horiz = 1 - abs(physics.named.data.xmat[max_thigh, 'zz'])
min_leg_horiz = 1 - abs(physics.named.data.xmat[min_leg, 'zz'])
legs = (min_leg_down + max_leg_up + max_thigh_horiz + min_leg_horiz) / 4
return torso * legs
def _sit_knees_reward(self, physics):
# torso up, standing, but lower
# foot up higher than foot down
standing = rewards.tolerance(physics.torso_height(),
bounds=(_YOGA_SITTING_HEIGHT, float('inf')),
margin=_YOGA_SITTING_HEIGHT/2)
upright = (1 + physics.torso_upright()) / 2
torso_up = (3*standing + upright) / 4
legs_height = (physics.named.data.xpos['left_leg', 'z'] + physics.named.data.xpos['right_leg', 'z']) / 2
legs_down = rewards.tolerance(legs_height,
bounds=(-float('inf'), _YOGA_SITTING_LEGS_HEIGHT),
margin=_YOGA_SITTING_LEGS_HEIGHT*1.5)
feet_height = (physics.named.data.xpos['left_foot', 'z'] + physics.named.data.xpos['right_foot', 'z']) / 2
feet_down = rewards.tolerance(feet_height,
bounds=(-float('inf'), _YOGA_LIE_DOWN_HEIGHT),
margin=_YOGA_LIE_DOWN_HEIGHT*1.5)
l_thigh_foot_distance = max(0.1, abs(physics.named.data.xpos['left_foot', 'x'] - physics.named.data.xpos['left_thigh', 'x'])) - 0.1
r_thigh_foot_distance = max(0.1, abs(physics.named.data.xpos['right_foot', 'x'] - physics.named.data.xpos['right_thigh', 'x'])) - 0.1
close = np.exp(-(l_thigh_foot_distance + r_thigh_foot_distance)/2)
legs = (3 * legs_down + feet_down) / 4
return torso_up * legs * close
def _urlb_flip_reward(self, physics):
standing = rewards.tolerance(physics.torso_height(),
bounds=(_STAND_HEIGHT, float('inf')),
margin=_STAND_HEIGHT / 2)
upright = (1 + physics.torso_upright()) / 2
stand_reward = (3 * standing + upright) / 4
move_reward = rewards.tolerance(self._forward *
physics.named.data.subtree_angmom['torso'][1], # physics.angmomentum(),
bounds=(_SPIN_SPEED, float('inf')),
margin=_SPIN_SPEED,
value_at_margin=0,
sigmoid='linear')
return stand_reward * (5 * move_reward + 1) / 6
def _flip_reward(self, physics):
thigh_height = (physics.named.data.xpos['left_thigh', 'z'] + physics.named.data.xpos['right_thigh', 'z']) / 2
thigh_up = rewards.tolerance(thigh_height,
bounds=(_YOGA_STAND_HEIGHT, float('inf')),
margin=_YOGA_STAND_HEIGHT/2)
feet_height = (physics.named.data.xpos['left_foot', 'z'] + physics.named.data.xpos['right_foot', 'z']) / 2
legs_up = rewards.tolerance(feet_height,
bounds=(_YOGA_LEGS_UP_HEIGHT, float('inf')),
margin=_YOGA_LEGS_UP_HEIGHT/2)
upside_down_reward = (3*legs_up + 2*thigh_up) / 5
if self._move_speed == 0:
return upside_down_reward
move_reward = rewards.tolerance(physics.named.data.subtree_angmom['torso'][1], # physics.angmomentum(),
bounds=(self._move_speed, float('inf')) if self._move_speed > 0 else (-float('inf'), self._move_speed),
margin=abs(self._move_speed)/2,
value_at_margin=0.5,
sigmoid='linear')
return upside_down_reward * (5*move_reward + 1) / 6
def _stand_reward(self, physics):
standing = rewards.tolerance(physics.torso_height(),
bounds=(_STAND_HEIGHT, float('inf')),
margin=_STAND_HEIGHT / 2)
upright = (1 + physics.torso_upright()) / 2
return (3 * standing + upright) / 4
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode.
In 'standing' mode, use initial orientation and small velocities.
In 'random' mode, randomize joint angles and let fall to the floor.
Args:
physics: An instance of `Physics`.
"""
randomizers.randomize_limited_and_rotational_joints(physics, self.random)
super().initialize_episode(physics)
def get_observation(self, physics):
"""Returns an observation of body orientations, height and velocites."""
obs = collections.OrderedDict()
obs['orientations'] = physics.orientations()
obs['height'] = physics.torso_height()
obs['velocity'] = physics.velocity()
return obs
def get_reward(self, physics):
"""Returns a reward to the agent."""
if self._goal in ['stand', 'walk', 'run']:
stand_reward = self._stand_reward(physics)
move_reward = rewards.tolerance(
self._forward * physics.horizontal_velocity(),
bounds=(self._move_speed, float('inf')),
margin=self._move_speed / 2,
value_at_margin=0.5,
sigmoid='linear')
return stand_reward * (5 * move_reward + 1) / 6
if self._goal == 'flipping':
self._move_speed = abs(self._move_speed)
pos_rew = self._flip_reward(physics)
self._move_speed = -abs(self._move_speed)
neg_rew = self._flip_reward(physics)
return max(pos_rew, neg_rew)
try:
reward_fn = getattr(self, f'_{self._goal}_reward')
return reward_fn(physics)
except Exception as e:
print(e)
raise NotImplementedError(f'Goal {self._goal} or function "_{self._goal}_reward" not implemented.')
if __name__ == '__main__':
from dm_control import viewer
import numpy as np
env = boxing()
env.task.visualize_reward = True
action_spec = env.action_spec()
def zero_policy(time_step):
print(time_step.reward)
return np.zeros(action_spec.shape)
ts = env.reset()
while True:
ts = env.step(zero_policy(ts))
viewer.launch(env, policy=zero_policy)
# obs = env.reset()
# next_obs, reward, done, info = env.step(np.zeros(6)) |