File size: 25,911 Bytes
2d9a728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
from collections import OrderedDict, deque
from typing import Any, NamedTuple
import os

import dm_env
import numpy as np
from dm_env import StepType, specs

import gym
import torch

class ExtendedTimeStep(NamedTuple):
    step_type: Any
    reward: Any
    discount: Any
    observation: Any
    action: Any

    def first(self):
        return self.step_type == StepType.FIRST

    def mid(self):
        return self.step_type == StepType.MID

    def last(self):
        return self.step_type == StepType.LAST

    def __getitem__(self, attr):
        return getattr(self, attr)


class FlattenJacoObservationWrapper(dm_env.Environment):
    def __init__(self, env):
        self._env = env
        self._obs_spec = OrderedDict()
        wrapped_obs_spec = env.observation_spec().copy()
        if 'front_close' in wrapped_obs_spec:
            spec = wrapped_obs_spec['front_close']
            # drop batch dim
            self._obs_spec['pixels'] = specs.BoundedArray(shape=spec.shape[1:],
                                                          dtype=spec.dtype,
                                                          minimum=spec.minimum,
                                                          maximum=spec.maximum,
                                                          name='pixels')
            wrapped_obs_spec.pop('front_close')

        for key, spec in wrapped_obs_spec.items():
            assert spec.dtype == np.float64
            assert type(spec) == specs.Array
        dim = np.sum(
            np.fromiter((int(np.prod(spec.shape))
                         for spec in wrapped_obs_spec.values()), np.int32))

        self._obs_spec['observations'] = specs.Array(shape=(dim,),
                                                     dtype=np.float32,
                                                     name='observations')

    def _transform_observation(self, time_step):
        obs = OrderedDict()

        if 'front_close' in time_step.observation:
            pixels = time_step.observation['front_close']
            time_step.observation.pop('front_close')
            pixels = np.squeeze(pixels)
            obs['pixels'] = pixels

        features = []
        for feature in time_step.observation.values():
            features.append(feature.ravel())
        obs['observations'] = np.concatenate(features, axis=0)
        return time_step._replace(observation=obs)

    def reset(self):
        time_step = self._env.reset()
        return self._transform_observation(time_step)

    def step(self, action):
        time_step = self._env.step(action)
        return self._transform_observation(time_step)

    def observation_spec(self):
        return self._obs_spec

    def action_spec(self):
        return self._env.action_spec()

    def __getattr__(self, name):
        return getattr(self._env, name)


class ActionRepeatWrapper(dm_env.Environment):
    def __init__(self, env, num_repeats):
        self._env = env
        self._num_repeats = num_repeats

    def step(self, action):
        reward = 0.0
        discount = 1.0
        for i in range(self._num_repeats):
            time_step = self._env.step(action)
            reward += (time_step.reward or 0.0) * discount
            discount *= time_step.discount
            if time_step.last():
                break

        return time_step._replace(reward=reward, discount=discount)

    def observation_spec(self):
        return self._env.observation_spec()

    def action_spec(self):
        return self._env.action_spec()

    def reset(self):
        return self._env.reset()

    def __getattr__(self, name):
        return getattr(self._env, name)


class FramesWrapper(dm_env.Environment):
    def __init__(self, env, num_frames=1, pixels_key='pixels'):
        self._env = env
        self._num_frames = num_frames
        self._frames = deque([], maxlen=num_frames)
        self._pixels_key = pixels_key

        wrapped_obs_spec = env.observation_spec()
        assert pixels_key in wrapped_obs_spec

        pixels_shape = wrapped_obs_spec[pixels_key].shape
        # remove batch dim
        if len(pixels_shape) == 4:
            pixels_shape = pixels_shape[1:]
        self._obs_spec = specs.BoundedArray(shape=np.concatenate(
            [[pixels_shape[2] * num_frames], pixels_shape[:2]], axis=0),
                                            dtype=np.uint8,
                                            minimum=0,
                                            maximum=255,
                                            name='observation')

    def _transform_observation(self, time_step):
        assert len(self._frames) == self._num_frames
        obs = np.concatenate(list(self._frames), axis=0)
        return time_step._replace(observation=obs)

    def _extract_pixels(self, time_step):
        pixels = time_step.observation[self._pixels_key]
        # remove batch dim
        if len(pixels.shape) == 4:
            pixels = pixels[0]
        return pixels.transpose(2, 0, 1).copy()

    def reset(self):
        time_step = self._env.reset()
        pixels = self._extract_pixels(time_step)
        for _ in range(self._num_frames):
            self._frames.append(pixels)
        return self._transform_observation(time_step)

    def step(self, action):
        time_step = self._env.step(action)
        pixels = self._extract_pixels(time_step)
        self._frames.append(pixels)
        return self._transform_observation(time_step)

    def observation_spec(self):
        return self._obs_spec

    def action_spec(self):
        return self._env.action_spec()

    def __getattr__(self, name):
        return getattr(self._env, name)

class OneHotAction(gym.Wrapper):
    def __init__(self, env):
        assert isinstance(env.action_space, gym.spaces.Discrete)
        super().__init__(env)
        self._random = np.random.RandomState()
        shape = (self.env.action_space.n,)
        space = gym.spaces.Box(low=0, high=1, shape=shape, dtype=np.float32)
        space.discrete = True
        self.action_space = space

    def step(self, action):
        index = np.argmax(action).astype(int)
        reference = np.zeros_like(action)
        reference[index] = 1
        if not np.allclose(reference, action):
            raise ValueError(f"Invalid one-hot action:\n{action}")
        return self.env.step(index)

    def reset(self):
        return self.env.reset()

    def _sample_action(self):
        actions = self.env.action_space.n
        index = self._random.randint(0, actions)
        reference = np.zeros(actions, dtype=np.float32)
        reference[index] = 1.0
        return reference

class ActionDTypeWrapper(dm_env.Environment):
    def __init__(self, env, dtype):
        self._env = env
        wrapped_action_spec = env.action_spec()
        self._action_spec = specs.BoundedArray(wrapped_action_spec.shape,
                                               dtype,
                                               wrapped_action_spec.minimum,
                                               wrapped_action_spec.maximum,
                                               'action')

    def step(self, action):
        action = action.astype(self._env.action_spec().dtype)
        return self._env.step(action)

    def observation_spec(self):
        return self._env.observation_spec()

    def action_spec(self):
        return self._action_spec

    def reset(self):
        return self._env.reset()

    def __getattr__(self, name):
        return getattr(self._env, name)


class ObservationDTypeWrapper(dm_env.Environment):
    def __init__(self, env, dtype):
        self._env = env
        self._dtype = dtype
        wrapped_obs_spec = env.observation_spec()['observations']
        self._obs_spec = specs.Array(wrapped_obs_spec.shape, dtype,
                                     'observation')

    def _transform_observation(self, time_step):
        obs = time_step.observation['observations'].astype(self._dtype)
        return time_step._replace(observation=obs)

    def reset(self):
        time_step = self._env.reset()
        return self._transform_observation(time_step)

    def step(self, action):
        time_step = self._env.step(action)
        return self._transform_observation(time_step)

    def observation_spec(self):
        return self._obs_spec

    def action_spec(self):
        return self._env.action_spec()

    def __getattr__(self, name):
        return getattr(self._env, name)


class ExtendedTimeStepWrapper(dm_env.Environment):
    def __init__(self, env):
        self._env = env

    def reset(self):
        time_step = self._env.reset()
        return self._augment_time_step(time_step)

    def step(self, action):
        time_step = self._env.step(action)
        return self._augment_time_step(time_step, action)

    def _augment_time_step(self, time_step, action=None):
        if action is None:
            action_spec = self.action_spec()
            action = np.zeros(action_spec.shape, dtype=action_spec.dtype)
        return ExtendedTimeStep(observation=time_step.observation,
                                step_type=time_step.step_type,
                                action=action,
                                reward=time_step.reward or 0.0,
                                discount=time_step.discount or 1.0)

    def observation_spec(self):
        return self._env.observation_spec()

    def action_spec(self):
        return self._env.action_spec()

    def __getattr__(self, name):
        return getattr(self._env, name)

class DMC:
  def __init__(self, env):
    self._env = env 
    self._ignored_keys = []

  def step(self, action):
    time_step = self._env.step(action)
    assert time_step.discount in (0, 1)
    obs = {
        'reward': time_step.reward,
        'is_first': False,
        'is_last': time_step.last(),
        'is_terminal': time_step.discount == 0,
        'observation': time_step.observation,
        'action' : action,
        'discount': time_step.discount
    }
    return time_step, obs 

  def reset(self):
    time_step = self._env.reset()
    obs = {
        'reward': 0.0,
        'is_first': True,
        'is_last': False,
        'is_terminal': False,
        'observation': time_step.observation,
        'action' : np.zeros_like(self.act_space['action'].sample()),
        'discount': time_step.discount
    }
    return time_step, obs

  def __getattr__(self, name):
    if name == 'obs_space':
        obs_spaces = {
            'observation': self._env.observation_spec(), 
            'is_first': gym.spaces.Box(0, 1, (), dtype=bool),
            'is_last': gym.spaces.Box(0, 1, (), dtype=bool),
            'is_terminal': gym.spaces.Box(0, 1, (), dtype=bool),
        }
        return obs_spaces
    if name == 'act_space':
        spec = self._env.action_spec()
        action = gym.spaces.Box((spec.minimum)*spec.shape[0], (spec.maximum)*spec.shape[0], shape=spec.shape, dtype=np.float32)
        act_space = {'action': action}
        return act_space
    return getattr(self._env, name)


class OneHotAction(gym.Wrapper):
    def __init__(self, env):
        assert isinstance(env.action_space, gym.spaces.Discrete)
        super().__init__(env)
        self._random = np.random.RandomState()
        shape = (self.env.action_space.n,)
        space = gym.spaces.Box(low=0, high=1, shape=shape, dtype=np.float32)
        space.discrete = True
        self.action_space = space

    def step(self, action):
        index = np.argmax(action).astype(int)
        reference = np.zeros_like(action)
        reference[index] = 1
        if not np.allclose(reference, action):
            raise ValueError(f"Invalid one-hot action:\n{action}")
        return self.env.step(index)

    def reset(self):
        return self.env.reset()

    def _sample_action(self):
        actions = self.env.action_space.n
        index = self._random.randint(0, actions)
        reference = np.zeros(actions, dtype=np.float32)
        reference[index] = 1.0
        return reference

class KitchenWrapper:
    def __init__(
        self,
        name,
        seed=0,
        action_repeat=1,
        size=(64, 64),
    ):
        import envs.kitchen_extra as kitchen_extra
        self._env  = {
            'microwave' : kitchen_extra.KitchenMicrowaveV0,
            'kettle' : kitchen_extra.KitchenKettleV0,
            'burner' : kitchen_extra.KitchenBurnerV0,
            'light'  : kitchen_extra.KitchenLightV0,
            'hinge'  : kitchen_extra.KitchenHingeV0,
            'slide'  : kitchen_extra.KitchenSlideV0,
            'top_burner' : kitchen_extra.KitchenTopBurnerV0,
        }[name]()
            
        self._size = size
        self._action_repeat = action_repeat
        self._seed = seed
        self._eval = False

    def eval_mode(self,):
        self._env.dense = False
        self._eval = True

    @property
    def obs_space(self):
        spaces = {
            "observation": gym.spaces.Box(0, 255, (3,) + self._size, dtype=np.uint8),
            "is_first": gym.spaces.Box(0, 1, (), dtype=bool),
            "is_last": gym.spaces.Box(0, 1, (), dtype=bool),
            "is_terminal": gym.spaces.Box(0, 1, (), dtype=bool),
            "state": self._env.observation_space,
        }
        return spaces

    @property
    def act_space(self):
        action = self._env.action_space
        return {"action": action}

    def step(self, action):
        # assert np.isfinite(action["action"]).all(), action["action"]
        reward = 0.0
        for _ in range(self._action_repeat):
            state, rew, done, info = self._env.step(action.copy())
            reward += rew 
        obs = {
            "reward": reward,
            "is_first": False,
            "is_last": False,  # will be handled by timelimit wrapper
            "is_terminal": False,  # will be handled by per_episode function
            "observation": info['images'].transpose(2, 0, 1).copy(),
            "state": state.astype(np.float32),
            'action' : action,
            'discount' : 1
        }
        if self._eval:
            obs['reward'] = min(obs['reward'], 1)
            if obs['reward'] > 0:
                obs['is_last'] = True
        return dm_env.TimeStep(
                step_type=dm_env.StepType.MID if not obs['is_last'] else dm_env.StepType.LAST, 
                reward=obs['reward'],
                discount=1,
                observation=obs['observation']), obs

    def reset(self,):
        state = self._env.reset()
        obs = {
            "reward": 0.0,
            "is_first": True,
            "is_last": False,
            "is_terminal": False,
            "observation": self.get_visual_obs(self._size),
            "state": state.astype(np.float32),
            'action' : np.zeros_like(self.act_space['action'].sample()),
            'discount' : 1
        }
        return dm_env.TimeStep(
                step_type=dm_env.StepType.FIRST,
                reward=None,
                discount=None,
                observation=obs['observation']), obs

    def __getattr__(self, name):
        if name == 'obs_space':
            return self.obs_space
        if name == 'act_space':
            return self.act_space
        return getattr(self._env, name)
    
    def get_visual_obs(self, resolution):
        img = self._env.render(resolution=resolution,).transpose(2, 0, 1).copy()
        return img

class ViClipWrapper:
    def __init__(self, env, hd_rendering=False, device='cuda'):
        self._env = env
        try:
            from tools.genrl_utils import viclip_global_instance
        except:
            from tools.genrl_utils import ViCLIPGlobalInstance
            viclip_global_instance = ViCLIPGlobalInstance()

        if not viclip_global_instance._instantiated:
            viclip_global_instance.instantiate(device)
        self.viclip_model = viclip_global_instance.viclip
        self.n_frames = self.viclip_model.n_frames
        self.viclip_emb_dim = viclip_global_instance.viclip_emb_dim
        self.n_frames = self.viclip_model.n_frames
        self.buffer = deque(maxlen=self.n_frames)
        # NOTE: these are hardcoded for now, as they are the best settings
        self.accumulate = True
        self.accumulate_buffer = []
        self.anticipate_conv1 = False
        self.hd_rendering = hd_rendering

    def hd_render(self, obs):
        if not self.hd_rendering:
            return obs['observation']
        if self._env._domain_name in ['mw', 'kitchen', 'mujoco']:
            return self.get_visual_obs((224,224,))
        else:
            render_kwargs = {**getattr(self, '_render_kwargs', {})}
            render_kwargs.update({'width' : 224, 'height' : 224})
            return self._env.physics.render(**render_kwargs).transpose(2,0,1)

    def preprocess(self, x):
        return x

    def process_accumulate(self, process_at_once=4): # NOTE: this could be varied for increasing FPS, depending on the size of the GPU
        self.accumulate = False
        x = np.stack(self.accumulate_buffer, axis=0)
        # Splitting in chunks
        chunks = []
        chunk_idxs = list(range(0, x.shape[0] + 1, process_at_once))
        if chunk_idxs[-1] != x.shape[0]:
            chunk_idxs.append(x.shape[0])
        start = 0
        for end in chunk_idxs[1:]:
            embeds = self.clip_process(x[start:end], bypass=True)
            chunks.append(embeds.cpu())
            start = end
        embeds = torch.cat(chunks, dim=0)
        assert embeds.shape[0] == len(self.accumulate_buffer)
        self.accumulate = True
        self.accumulate_buffer = []
        return [*embeds.cpu().numpy()], 'clip_video'
    
    def process_episode(self, obs, process_at_once=8):
        self.accumulate = False
        sequences = []
        for j in range(obs.shape[0] - self.n_frames + 1):
            sequences.append(obs[j:j+self.n_frames].copy())
        sequences = np.stack(sequences, axis=0)

        idx_start = 0
        clip_vid = []
        for idx_end in range(process_at_once, sequences.shape[0] + process_at_once, process_at_once):
            x = sequences[idx_start:idx_end]
            with torch.no_grad(): # , torch.cuda.amp.autocast():
                x = self.clip_process(x, bypass=True) 
            clip_vid.append(x)
            idx_start = idx_end
        if len(clip_vid) == 1: # process all at once
            embeds = clip_vid[0]
        else:
            embeds = torch.cat(clip_vid, dim=0)
        pad = torch.zeros( (self.n_frames - 1, *embeds.shape[1:]), device=embeds.device, dtype=embeds.dtype)
        embeds = torch.cat([pad, embeds], dim=0)
        assert embeds.shape[0] == obs.shape[0], f"Shapes are different {embeds.shape[0]} {obs.shape[0]}"
        return embeds.cpu().numpy()

    def get_sequence(self,):
        return np.expand_dims(np.stack(self.buffer, axis=0), axis=0)
    
    def clip_process(self, x, bypass=False):
        if len(self.buffer) == self.n_frames or bypass:
            if self.accumulate:
                self.accumulate_buffer.append(self.preprocess(x)[0])
                return torch.zeros(self.viclip_emb_dim)
            with torch.no_grad():
                B, n_frames, C, H, W = x.shape
                obs = torch.from_numpy(x.copy().reshape(B * n_frames, C, H, W)).to(self.viclip_model.device)
                processed_obs = self.viclip_model.preprocess_transf(obs / 255)
                reshaped_obs = processed_obs.reshape(B, n_frames, 3,processed_obs.shape[-2],processed_obs.shape[-1])
                video_embed = self.viclip_model.get_vid_features(reshaped_obs)
            return video_embed.detach()
        else:
            return torch.zeros(self.viclip_emb_dim)

    def step(self, action):
        ts, obs = self._env.step(action)
        self.buffer.append(self.hd_render(obs))
        obs['clip_video'] = self.clip_process(self.get_sequence()).cpu().numpy()
        return ts, obs

    def reset(self,):
        # Important to reset the buffer        
        self.buffer = deque(maxlen=self.n_frames)

        ts, obs = self._env.reset()
        self.buffer.append(self.hd_render(obs))
        obs['clip_video'] = self.clip_process(self.get_sequence()).cpu().numpy()
        return ts, obs

    def __getattr__(self, name):
        if name == 'obs_space':
            space = self._env.obs_space
            space['clip_video'] = gym.spaces.Box(-np.inf, np.inf, (self.viclip_emb_dim,), dtype=np.float32)  
            return space
        return getattr(self._env, name)

class TimeLimit:

  def __init__(self, env, duration):
    self._env = env
    self._duration = duration
    self._step = None

  def __getattr__(self, name):
    if name.startswith('__'):
      raise AttributeError(name)
    return getattr(self._env, name)

  def step(self, action):
    assert self._step is not None, 'Must reset environment.'
    ts, obs = self._env.step(action)
    self._step += 1
    if self._duration and self._step >= self._duration:
      ts = dm_env.TimeStep(dm_env.StepType.LAST, ts.reward, ts.discount, ts.observation)
      obs['is_last'] = True
      self._step = None
    return ts, obs

  def reset(self):
    self._step = 0
    return self._env.reset()

  def reset_with_task_id(self, task_id):
    self._step = 0
    return self._env.reset_with_task_id(task_id)
  
class ClipActionWrapper:

  def __init__(self, env, low=-1.0, high=1.0):
    self._env = env
    self._low = low
    self._high = high

  def __getattr__(self, name):
    if name.startswith('__'):
      raise AttributeError(name)
    return getattr(self._env, name)

  def step(self, action):
    clipped_action = np.clip(action, self._low, self._high)
    return self._env.step(clipped_action)

  def reset(self):
    self._step = 0
    return self._env.reset()

  def reset_with_task_id(self, task_id):
    self._step = 0
    return self._env.reset_with_task_id(task_id)

class NormalizeAction:

  def __init__(self, env, key='action'):
    self._env = env
    self._key = key
    space = env.act_space[key]
    self._mask = np.isfinite(space.low) & np.isfinite(space.high)
    self._low = np.where(self._mask, space.low, -1)
    self._high = np.where(self._mask, space.high, 1)

  def __getattr__(self, name):
    if name.startswith('__'):
      raise AttributeError(name)
    try:
      return getattr(self._env, name)
    except AttributeError:
      raise ValueError(name)

  @property
  def act_space(self):
    low = np.where(self._mask, -np.ones_like(self._low), self._low)
    high = np.where(self._mask, np.ones_like(self._low), self._high)
    space = gym.spaces.Box(low, high, dtype=np.float32)
    return {**self._env.act_space, self._key: space}

  def step(self, action):
    orig = (action[self._key] + 1) / 2 * (self._high - self._low) + self._low
    orig = np.where(self._mask, orig, action[self._key])
    return self._env.step({**action, self._key: orig})

def _make_jaco(obs_type, domain, task, action_repeat, seed, img_size,):
    import envs.custom_dmc_tasks as cdmc
    env = cdmc.make_jaco(task, obs_type, seed, img_size,)
    env = ActionDTypeWrapper(env, np.float32)
    env = ActionRepeatWrapper(env, action_repeat)
    env = FlattenJacoObservationWrapper(env)
    env._size = (img_size, img_size)
    return env


def _make_dmc(obs_type, domain, task, action_repeat, seed, img_size,):
    visualize_reward = False
    from dm_control import manipulation, suite
    import envs.custom_dmc_tasks as cdmc

    if (domain, task) in suite.ALL_TASKS:
        env = suite.load(domain,
                         task,
                         task_kwargs=dict(random=seed),
                         environment_kwargs=dict(flat_observation=True),
                         visualize_reward=visualize_reward)
    else:
        env = cdmc.make(domain,
                        task,
                        task_kwargs=dict(random=seed),
                        environment_kwargs=dict(flat_observation=True),
                        visualize_reward=visualize_reward)
    env = ActionDTypeWrapper(env, np.float32)
    env = ActionRepeatWrapper(env, action_repeat)
    if obs_type == 'pixels':
        from dm_control.suite.wrappers import pixels
        # zoom in camera for quadruped
        camera_id = dict(locom_rodent=1,quadruped=2).get(domain, 0)
        render_kwargs = dict(height=img_size, width=img_size, camera_id=camera_id)
        env = pixels.Wrapper(env,
                             pixels_only=True,
                             render_kwargs=render_kwargs)
        env._size = (img_size, img_size)
        env._camera = camera_id
    return env


def make(name, obs_type, action_repeat, seed, img_size=64, viclip_encode=False, clip_hd_rendering=False, device='cuda'):
    assert obs_type in ['states', 'pixels']
    domain, task = name.split('_', 1)
    if domain == 'kitchen':
        env = TimeLimit(KitchenWrapper(task, seed=seed, action_repeat=action_repeat, size=(img_size,img_size)), 280 // action_repeat)
    else:
        os.environ['PYOPENGL_PLATFORM'] = 'egl' 
        os.environ['MUJOCO_GL'] = 'egl'

        domain = dict(cup='ball_in_cup', point='point_mass').get(domain, domain)

        make_fn = _make_jaco if domain == 'jaco' else _make_dmc
        env = make_fn(obs_type, domain, task, action_repeat, seed, img_size,)

        if obs_type == 'pixels':
            env = FramesWrapper(env,)
        else:
            env = ObservationDTypeWrapper(env, np.float32)

        from dm_control.suite.wrappers import action_scale
        env = action_scale.Wrapper(env, minimum=-1.0, maximum=+1.0)
        env = ExtendedTimeStepWrapper(env)

        env =  DMC(env)
    env._domain_name = domain
    
    if isinstance(env.act_space['action'], gym.spaces.Box):
        env = ClipActionWrapper(env,)

    if viclip_encode:
        env = ViClipWrapper(env, hd_rendering=clip_hd_rendering, device=device)
    return env