Spaces:
Sleeping
Sleeping
File size: 1,214 Bytes
2d9a728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import torch
import numpy as np
def TubeMaskingGenerator(input_size, mask_ratio, batch, device='cuda'):
frames, height, width = input_size
num_patches_per_frame = height * width
num_masks_per_frame = int(mask_ratio * num_patches_per_frame)
mask_list = []
for _ in range(batch):
mask_per_frame = np.hstack([
np.zeros(num_patches_per_frame - num_masks_per_frame),
np.ones(num_masks_per_frame),
])
np.random.shuffle(mask_per_frame)
mask_list.append(np.tile(mask_per_frame, (frames, 1)).flatten())
mask = torch.Tensor(mask_list).to(device, non_blocking=True).to(torch.bool)
return mask
def RandomMaskingGenerator(input_size, mask_ratio, batch, device='cuda'):
frames, height, width = input_size
num_patches = frames * height * width # 8x14x14
num_mask = int(mask_ratio * num_patches)
mask_list = []
for _ in range(batch):
mask = np.hstack([
np.zeros(num_patches - num_mask),
np.ones(num_mask),
])
np.random.shuffle(mask)
mask_list.append(mask)
mask = torch.Tensor(np.array(mask_list)).to(device, non_blocking=True).to(torch.bool)
return mask |