Spaces:
Sleeping
Sleeping
import numbers | |
import cv2 | |
import numpy as np | |
import PIL | |
import torch | |
def _is_tensor_clip(clip): | |
return torch.is_tensor(clip) and clip.ndimension() == 4 | |
def crop_clip(clip, min_h, min_w, h, w): | |
if isinstance(clip[0], np.ndarray): | |
cropped = [img[min_h:min_h + h, min_w:min_w + w, :] for img in clip] | |
elif isinstance(clip[0], PIL.Image.Image): | |
cropped = [ | |
img.crop((min_w, min_h, min_w + w, min_h + h)) for img in clip | |
] | |
else: | |
raise TypeError('Expected numpy.ndarray or PIL.Image' + | |
'but got list of {0}'.format(type(clip[0]))) | |
return cropped | |
def resize_clip(clip, size, interpolation='bilinear'): | |
if isinstance(clip[0], np.ndarray): | |
if isinstance(size, numbers.Number): | |
im_h, im_w, im_c = clip[0].shape | |
# Min spatial dim already matches minimal size | |
if (im_w <= im_h and im_w == size) or (im_h <= im_w | |
and im_h == size): | |
return clip | |
new_h, new_w = get_resize_sizes(im_h, im_w, size) | |
size = (new_w, new_h) | |
else: | |
size = size[0], size[1] | |
if interpolation == 'bilinear': | |
np_inter = cv2.INTER_LINEAR | |
else: | |
np_inter = cv2.INTER_NEAREST | |
scaled = [ | |
cv2.resize(img, size, interpolation=np_inter) for img in clip | |
] | |
elif isinstance(clip[0], PIL.Image.Image): | |
if isinstance(size, numbers.Number): | |
im_w, im_h = clip[0].size | |
# Min spatial dim already matches minimal size | |
if (im_w <= im_h and im_w == size) or (im_h <= im_w | |
and im_h == size): | |
return clip | |
new_h, new_w = get_resize_sizes(im_h, im_w, size) | |
size = (new_w, new_h) | |
else: | |
size = size[1], size[0] | |
if interpolation == 'bilinear': | |
pil_inter = PIL.Image.BILINEAR | |
else: | |
pil_inter = PIL.Image.NEAREST | |
scaled = [img.resize(size, pil_inter) for img in clip] | |
else: | |
raise TypeError('Expected numpy.ndarray or PIL.Image' + | |
'but got list of {0}'.format(type(clip[0]))) | |
return scaled | |
def get_resize_sizes(im_h, im_w, size): | |
if im_w < im_h: | |
ow = size | |
oh = int(size * im_h / im_w) | |
else: | |
oh = size | |
ow = int(size * im_w / im_h) | |
return oh, ow | |
def normalize(clip, mean, std, inplace=False): | |
if not _is_tensor_clip(clip): | |
raise TypeError('tensor is not a torch clip.') | |
if not inplace: | |
clip = clip.clone() | |
dtype = clip.dtype | |
mean = torch.as_tensor(mean, dtype=dtype, device=clip.device) | |
std = torch.as_tensor(std, dtype=dtype, device=clip.device) | |
clip.sub_(mean[:, None, None, None]).div_(std[:, None, None, None]) | |
return clip | |