Spaces:
Sleeping
Sleeping
import argparse | |
import datetime | |
import numpy as np | |
import time | |
import torch | |
import torch.backends.cudnn as cudnn | |
import json | |
import os | |
from functools import partial | |
from pathlib import Path | |
from collections import OrderedDict | |
from datasets.mixup import Mixup | |
from timm.models import create_model | |
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy | |
from timm.utils import ModelEma | |
from optim_factory import create_optimizer, get_parameter_groups, LayerDecayValueAssigner | |
from datasets import build_dataset | |
from single_modality.engines.engine_for_finetuning import train_one_epoch, validation_one_epoch, final_test, merge | |
from utils import NativeScalerWithGradNormCount as NativeScaler | |
from utils import multiple_samples_collate | |
import utils | |
from models import * | |
from models.internvl_clip_vision import inflate_weight | |
def get_args(): | |
parser = argparse.ArgumentParser('VideoMAE fine-tuning and evaluation script for video classification', add_help=False) | |
parser.add_argument('--batch_size', default=64, type=int) | |
parser.add_argument('--epochs', default=30, type=int) | |
parser.add_argument('--update_freq', default=1, type=int) | |
parser.add_argument('--save_ckpt_freq', default=100, type=int) | |
parser.add_argument('--steps_per_print', default=1, type=int) | |
parser.add_argument('--use_ceph_checkpoint', action='store_true', | |
help="whether use ceph to save and load checkpoint, may be some bug now") | |
parser.set_defaults(use_ceph_checkpoint=False) | |
parser.add_argument('--ceph_checkpoint_prefix', default='', type=str, | |
help='prefix for checkpoint in ceph') | |
parser.add_argument('--ckpt_path_split', default='/exp/', type=str, | |
help='string for splitting the ckpt_path') | |
# Model parameters | |
parser.add_argument('--model', default='vit_base_patch16_224', type=str, metavar='MODEL', | |
help='Name of model to train') | |
parser.add_argument('--tubelet_size', type=int, default=2) | |
parser.add_argument('--input_size', default=224, type=int, | |
help='videos input size') | |
parser.add_argument('--layer_scale_init_value', default=1e-5, type=float, | |
help="0.1 for base, 1e-5 for large. set 0 to disable LayerScale") | |
parser.add_argument('--layerscale_no_force_fp32', action='store_true', | |
help="Not force fp32 for LayerScale") | |
parser.set_defaults(layerscale_no_force_fp32=False) | |
parser.add_argument('--sep_pos_embed', action='store_true', | |
help="whether use seperable position embedding") | |
parser.add_argument('--center_init', action='store_true', | |
help="center initlization for patch embedding") | |
parser.add_argument('--fc_drop_rate', type=float, default=0.0, metavar='PCT', | |
help='Dropout rate (default: 0.)') | |
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT', | |
help='Dropout rate (default: 0.)') | |
parser.add_argument('--attn_drop_rate', type=float, default=0.0, metavar='PCT', | |
help='Attention dropout rate (default: 0.)') | |
parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT', | |
help='Drop path rate (default: 0.1)') | |
parser.add_argument('--head_drop_path', type=float, default=0.0, metavar='PCT', | |
help='Head Drop path rate (default: 0.0)') | |
parser.add_argument('--disable_eval_during_finetuning', action='store_true', default=False) | |
parser.add_argument('--model_ema', action='store_true', default=False) | |
parser.add_argument('--model_ema_decay', type=float, default=0.9999, help='') | |
parser.add_argument('--model_ema_force_cpu', action='store_true', default=False, help='') | |
# Optimizer parameters | |
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', | |
help='Optimizer (default: "adamw"') | |
parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON', | |
help='Optimizer Epsilon (default: 1e-8)') | |
parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA', | |
help='Optimizer Betas (default: None, use opt default)') | |
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', | |
help='Clip gradient norm (default: None, no clipping)') | |
parser.add_argument('--momentum', type=float, default=0.9, metavar='M', | |
help='SGD momentum (default: 0.9)') | |
parser.add_argument('--weight_decay', type=float, default=0.05, | |
help='weight decay (default: 0.05)') | |
parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the | |
weight decay. We use a cosine schedule for WD and using a larger decay by | |
the end of training improves performance for ViTs.""") | |
parser.add_argument('--lr', type=float, default=1e-3, metavar='LR', | |
help='learning rate (default: 1e-3)') | |
parser.add_argument('--layer_decay', type=float, default=0.75) | |
parser.add_argument('--warmup_lr', type=float, default=1e-6, metavar='LR', | |
help='warmup learning rate (default: 1e-6)') | |
parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR', | |
help='lower lr bound for cyclic schedulers that hit 0 (1e-6)') | |
parser.add_argument('--warmup_epochs', type=float, default=5, metavar='N', | |
help='epochs to warmup LR, if scheduler supports') | |
parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N', | |
help='num of steps to warmup LR, will overload warmup_epochs if set > 0') | |
# Augmentation parameters | |
parser.add_argument('--color_jitter', type=float, default=0.4, metavar='PCT', | |
help='Color jitter factor (default: 0.4)') | |
parser.add_argument('--num_sample', type=int, default=2, | |
help='Repeated_aug (default: 2)') | |
parser.add_argument('--aa', type=str, default='rand-m7-n4-mstd0.5-inc1', metavar='NAME', | |
help='Use AutoAugment policy. "v0" or "original". " + "(default: rand-m7-n4-mstd0.5-inc1)'), | |
parser.add_argument('--smoothing', type=float, default=0.1, | |
help='Label smoothing (default: 0.1)') | |
parser.add_argument('--train_interpolation', type=str, default='bicubic', | |
help='Training interpolation (random, bilinear, bicubic default: "bicubic")') | |
# Evaluation parameters | |
parser.add_argument('--crop_pct', type=float, default=None) | |
parser.add_argument('--short_side_size', type=int, default=224) | |
parser.add_argument('--test_num_segment', type=int, default=5) | |
parser.add_argument('--test_num_crop', type=int, default=3) | |
# Random Erase params | |
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', | |
help='Random erase prob (default: 0.25)') | |
parser.add_argument('--remode', type=str, default='pixel', | |
help='Random erase mode (default: "pixel")') | |
parser.add_argument('--recount', type=int, default=1, | |
help='Random erase count (default: 1)') | |
parser.add_argument('--resplit', action='store_true', default=False, | |
help='Do not random erase first (clean) augmentation split') | |
# Mixup params | |
parser.add_argument('--mixup', type=float, default=0.8, | |
help='mixup alpha, mixup enabled if > 0.') | |
parser.add_argument('--cutmix', type=float, default=1.0, | |
help='cutmix alpha, cutmix enabled if > 0.') | |
parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None, | |
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') | |
parser.add_argument('--mixup_prob', type=float, default=1.0, | |
help='Probability of performing mixup or cutmix when either/both is enabled') | |
parser.add_argument('--mixup_switch_prob', type=float, default=0.5, | |
help='Probability of switching to cutmix when both mixup and cutmix enabled') | |
parser.add_argument('--mixup_mode', type=str, default='batch', | |
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') | |
# Finetuning params | |
parser.add_argument('--finetune', default='', help='finetune from checkpoint') | |
parser.add_argument('--delete_head', action='store_true', help='whether delete head') | |
parser.add_argument('--model_key', default='model|module', type=str) | |
parser.add_argument('--model_prefix', default='', type=str) | |
parser.add_argument('--init_scale', default=0.001, type=float) | |
parser.add_argument('--use_checkpoint', action='store_true') | |
parser.set_defaults(use_checkpoint=False) | |
parser.add_argument('--checkpoint_num', default=0, type=int, | |
help='number of layers for using checkpoint') | |
parser.add_argument('--use_mean_pooling', action='store_true') | |
parser.set_defaults(use_mean_pooling=True) | |
parser.add_argument('--use_cls', action='store_false', dest='use_mean_pooling') | |
# Dataset parameters | |
parser.add_argument('--prefix', default='', type=str, help='prefix for data') | |
parser.add_argument('--split', default=' ', type=str, help='split for metadata') | |
parser.add_argument('--filename_tmpl', default='img_{:05}.jpg', type=str, help='file template') | |
parser.add_argument('--data_path', default='you_data_path', type=str, | |
help='dataset path') | |
parser.add_argument('--eval_data_path', default=None, type=str, | |
help='dataset path for evaluation') | |
parser.add_argument('--nb_classes', default=400, type=int, | |
help='number of the classification types') | |
parser.add_argument('--imagenet_default_mean_and_std', default=True, action='store_true') | |
parser.add_argument('--use_decord', action='store_true', | |
help='whether use decord to load video, otherwise load image') | |
parser.add_argument('--no_use_decord', action='store_false', dest='use_decord') | |
parser.set_defaults(use_decord=True) | |
parser.add_argument('--num_segments', type=int, default=1) | |
parser.add_argument('--num_frames', type=int, default=16) | |
parser.add_argument('--sampling_rate', type=int, default=4) | |
parser.add_argument('--data_set', default='Kinetics', choices=[ | |
'Kinetics', 'Kinetics_sparse', | |
'SSV2', 'UCF101', 'HMDB51', 'image_folder', | |
'mitv1_sparse', | |
'ANet', 'HACS', 'ANet_interval', 'HACS_interval', | |
], type=str, help='dataset') | |
parser.add_argument('--output_dir', default='', | |
help='path where to save, empty for no saving') | |
parser.add_argument('--log_dir', default=None, | |
help='path where to tensorboard log') | |
parser.add_argument('--device', default='cuda', | |
help='device to use for training / testing') | |
parser.add_argument('--seed', default=0, type=int) | |
parser.add_argument('--resume', default='', | |
help='resume from checkpoint') | |
parser.add_argument('--auto_resume', action='store_true') | |
parser.add_argument('--no_auto_resume', action='store_false', dest='auto_resume') | |
parser.set_defaults(auto_resume=True) | |
parser.add_argument('--save_ckpt', action='store_true') | |
parser.add_argument('--no_save_ckpt', action='store_false', dest='save_ckpt') | |
parser.set_defaults(save_ckpt=True) | |
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', | |
help='start epoch') | |
parser.add_argument('--test_best', action='store_true', | |
help='Whether test the best model') | |
parser.add_argument('--eval', action='store_true', | |
help='Perform evaluation only') | |
parser.add_argument('--dist_eval', action='store_true', default=False, | |
help='Enabling distributed evaluation') | |
parser.add_argument('--num_workers', default=10, type=int) | |
parser.add_argument('--pin_mem', action='store_true', | |
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') | |
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem') | |
parser.set_defaults(pin_mem=True) | |
# distributed training parameters | |
parser.add_argument('--world_size', default=1, type=int, | |
help='number of distributed processes') | |
parser.add_argument('--local_rank', default=-1, type=int) | |
parser.add_argument('--dist_on_itp', action='store_true') | |
parser.add_argument('--dist_url', default='env://', | |
help='url used to set up distributed training') | |
parser.add_argument('--enable_deepspeed', action='store_true', default=False) | |
parser.add_argument('--bf16', default=False, action='store_true') | |
parser.add_argument('--zero_stage', default=0, type=int, | |
help='ZeRO optimizer stage (default: 0)') | |
known_args, _ = parser.parse_known_args() | |
if known_args.enable_deepspeed: | |
try: | |
import deepspeed | |
from deepspeed import DeepSpeedConfig | |
parser = deepspeed.add_config_arguments(parser) | |
ds_init = deepspeed.initialize | |
except: | |
print("Please 'pip install deepspeed'") | |
exit(0) | |
else: | |
ds_init = None | |
return parser.parse_args(), ds_init | |
def main(args, ds_init): | |
utils.init_distributed_mode(args) | |
if ds_init is not None: | |
utils.create_internvideo2_ds_config(args) | |
print(args) | |
device = torch.device(args.device) | |
# fix the seed for reproducibility | |
seed = args.seed + utils.get_rank() | |
torch.manual_seed(seed) | |
np.random.seed(seed) | |
# random.seed(seed) | |
cudnn.benchmark = True | |
dataset_train, args.nb_classes = build_dataset(is_train=True, test_mode=False, args=args) | |
if args.disable_eval_during_finetuning: | |
dataset_val = None | |
else: | |
dataset_val, _ = build_dataset(is_train=False, test_mode=False, args=args) | |
dataset_test, _ = build_dataset(is_train=False, test_mode=True, args=args) | |
num_tasks = utils.get_world_size() | |
global_rank = utils.get_rank() | |
sampler_train = torch.utils.data.DistributedSampler( | |
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True | |
) | |
print("Sampler_train = %s" % str(sampler_train)) | |
if args.dist_eval: | |
if len(dataset_val) % num_tasks != 0: | |
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. ' | |
'This will slightly alter validation results as extra duplicate entries are added to achieve ' | |
'equal num of samples per-process.') | |
sampler_val = torch.utils.data.DistributedSampler( | |
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False) | |
sampler_test = torch.utils.data.DistributedSampler( | |
dataset_test, num_replicas=num_tasks, rank=global_rank, shuffle=False) | |
else: | |
sampler_val = torch.utils.data.SequentialSampler(dataset_val) | |
if global_rank == 0 and args.log_dir is not None: | |
os.makedirs(args.log_dir, exist_ok=True) | |
log_writer = utils.TensorboardLogger(log_dir=args.log_dir) | |
else: | |
log_writer = None | |
if args.num_sample > 1: | |
collate_func = partial(multiple_samples_collate, fold=False) | |
else: | |
collate_func = None | |
data_loader_train = torch.utils.data.DataLoader( | |
dataset_train, sampler=sampler_train, | |
batch_size=args.batch_size, | |
num_workers=args.num_workers, | |
pin_memory=args.pin_mem, | |
drop_last=True, | |
collate_fn=collate_func, | |
persistent_workers=True | |
) | |
if dataset_val is not None: | |
data_loader_val = torch.utils.data.DataLoader( | |
dataset_val, sampler=sampler_val, | |
batch_size=int(1.5 * args.batch_size), | |
num_workers=args.num_workers, | |
pin_memory=args.pin_mem, | |
drop_last=False, | |
persistent_workers=True | |
) | |
else: | |
data_loader_val = None | |
if dataset_test is not None: | |
data_loader_test = torch.utils.data.DataLoader( | |
dataset_test, sampler=sampler_test, | |
batch_size=args.batch_size, | |
num_workers=args.num_workers, | |
pin_memory=args.pin_mem, | |
drop_last=False, | |
persistent_workers=True | |
) | |
else: | |
data_loader_test = None | |
mixup_fn = None | |
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None | |
if mixup_active: | |
print("Mixup is activated!") | |
mixup_fn = Mixup( | |
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, | |
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, | |
label_smoothing=args.smoothing, num_classes=args.nb_classes) | |
model = create_model( | |
args.model, | |
pretrained=False, | |
num_classes=args.nb_classes, | |
num_frames=args.num_frames * args.num_segments, | |
tubelet_size=args.tubelet_size, | |
sep_pos_embed=args.sep_pos_embed, | |
fc_drop_rate=args.fc_drop_rate, | |
drop_path_rate=args.drop_path, | |
head_drop_path_rate=args.head_drop_path, | |
use_checkpoint=args.use_checkpoint, | |
checkpoint_num=args.checkpoint_num, | |
init_scale=args.init_scale, | |
init_values=args.layer_scale_init_value, | |
layerscale_no_force_fp32=args.layerscale_no_force_fp32, | |
) | |
patch_size = model.patch_embed.patch_size | |
print("Patch size = %s" % str(patch_size)) | |
args.window_size = (args.num_frames // args.tubelet_size, args.input_size // patch_size[0], args.input_size // patch_size[1]) | |
args.patch_size = patch_size | |
if args.finetune: | |
if args.finetune.startswith('https'): | |
checkpoint = torch.hub.load_state_dict_from_url( | |
args.finetune, map_location='cpu', check_hash=True) | |
else: | |
checkpoint = torch.load(args.finetune, map_location='cpu') | |
print("Load ckpt from %s" % args.finetune) | |
checkpoint_model = None | |
for model_key in args.model_key.split('|'): | |
if model_key in checkpoint: | |
checkpoint_model = checkpoint[model_key] | |
print("Load state_dict by model_key = %s" % model_key) | |
break | |
if checkpoint_model is None: | |
checkpoint_model = checkpoint | |
if 'head.weight' in checkpoint_model.keys(): | |
if args.delete_head: | |
print("Removing head from pretrained checkpoint") | |
del checkpoint_model['head.weight'] | |
del checkpoint_model['head.bias'] | |
elif checkpoint_model['head.weight'].shape[0] == 710: | |
if args.nb_classes == 400: | |
checkpoint_model['head.weight'] = checkpoint_model['head.weight'][:args.nb_classes] | |
checkpoint_model['head.bias'] = checkpoint_model['head.bias'][:args.nb_classes] | |
elif args.nb_classes in [600, 700]: | |
# download from https://drive.google.com/drive/folders/17cJd2qopv-pEG8NSghPFjZo1UUZ6NLVm | |
map_path = f'./k710/label_mixto{args.nb_classes}.json' | |
print(f'Load label map from {map_path}') | |
with open(map_path) as f: | |
label_map = json.load(f) | |
checkpoint_model['head.weight'] = checkpoint_model['head.weight'][label_map] | |
checkpoint_model['head.bias'] = checkpoint_model['head.bias'][label_map] | |
all_keys = list(checkpoint_model.keys()) | |
new_dict = OrderedDict() | |
for key in all_keys: | |
if key.startswith('backbone.'): | |
new_dict[key[9:]] = checkpoint_model[key] | |
elif key.startswith('encoder.'): | |
new_dict[key[8:]] = checkpoint_model[key] | |
else: | |
new_dict[key] = checkpoint_model[key] | |
checkpoint_model = new_dict | |
if checkpoint_model['patch_embed.proj.weight'].shape[2] == 1 and model.patch_embed.tubelet_size > 1: | |
print("Inflate patch embedding") | |
print(f"Use center initilization: {args.center_init}") | |
checkpoint_model['patch_embed.proj.weight'] = inflate_weight( | |
checkpoint_model['patch_embed.proj.weight'][:, :, 0], | |
model.patch_embed.tubelet_size, | |
center=args.center_init | |
) | |
# interpolate position embedding | |
if 'pos_embed' in checkpoint_model: | |
pos_embed_checkpoint = checkpoint_model['pos_embed'] | |
embedding_size = pos_embed_checkpoint.shape[-1] # channel dim | |
num_patches = model.patch_embed.num_patches # | |
num_extra_tokens = model.pos_embed.shape[-2] - num_patches # 0/1 | |
# we use 8 frames for pretraining | |
orig_t_size = 8 | |
new_t_size = args.num_frames * args.num_segments // model.patch_embed.tubelet_size | |
# height (== width) for the checkpoint position embedding | |
orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5) | |
# height (== width) for the new position embedding | |
new_size = int((num_patches // (new_t_size))** 0.5) | |
# class_token and dist_token are kept unchanged | |
if orig_t_size != new_t_size: | |
print(f"Temporal interpolate from {orig_t_size} to {new_t_size}") | |
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] | |
# only the position tokens are interpolated | |
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] | |
# B, L, C -> B, T, HW, C -> BHW, C, T (B = 1) | |
pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size) | |
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size) | |
pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear') | |
pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size) | |
pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size) | |
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) | |
checkpoint_model['pos_embed'] = new_pos_embed | |
pos_embed_checkpoint = new_pos_embed | |
# class_token and dist_token are kept unchanged | |
if orig_size != new_size: | |
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) | |
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] | |
# only the position tokens are interpolated | |
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] | |
# B, L, C -> BT, H, W, C -> BT, C, H, W | |
pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size) | |
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) | |
pos_tokens = torch.nn.functional.interpolate( | |
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) | |
# BT, C, H, W -> BT, H, W, C -> B, T, H, W, C | |
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size) | |
pos_tokens = pos_tokens.flatten(1, 3) # B, L, C | |
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) | |
checkpoint_model['pos_embed'] = new_pos_embed | |
elif 'pos_embed_spatial' in checkpoint_model and 'pos_embed_temporal' in checkpoint_model: | |
pos_embed_spatial_checkpoint = checkpoint_model['pos_embed_spatial'] | |
pos_embed_temporal_checkpoint = checkpoint_model['pos_embed_temporal'] | |
embedding_size = pos_embed_spatial_checkpoint.shape[-1] # channel dim | |
num_patches = model.patch_embed.num_patches # | |
orig_t_size = pos_embed_temporal_checkpoint.shape[-2] | |
new_t_size = args.num_frames // model.patch_embed.tubelet_size | |
# height (== width) for the checkpoint position embedding | |
orig_size = int(pos_embed_spatial_checkpoint.shape[-2] ** 0.5) | |
# height (== width) for the new position embedding | |
new_size = int((num_patches // new_t_size) ** 0.5) | |
if orig_t_size != new_t_size: | |
print(f"Temporal interpolate from {orig_t_size} to {new_t_size}") | |
tmp_pos_embed = pos_embed_temporal_checkpoint.view(1, orig_t_size, -1, embedding_size) | |
tmp_pos_embed = tmp_pos_embed.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size) | |
tmp_pos_embed = torch.nn.functional.interpolate(tmp_pos_embed, size=new_t_size, mode='linear') | |
tmp_pos_embed = tmp_pos_embed.view(1, -1, embedding_size, new_t_size) | |
tmp_pos_embed = tmp_pos_embed.permute(0, 3, 1, 2).reshape(1, -1, embedding_size) | |
checkpoint_model['pos_embed_temporal'] = tmp_pos_embed | |
if orig_size != new_size: | |
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) | |
pos_tokens = pos_embed_spatial_checkpoint | |
# B, L, C -> BT, H, W, C -> BT, C, H, W | |
pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size) | |
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) | |
pos_tokens = torch.nn.functional.interpolate( | |
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) | |
# BT, C, H, W -> BT, H, W, C -> B, T, H, W, C | |
pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size) | |
pos_tokens = pos_tokens.flatten(1, 3) # B, L, C | |
checkpoint_model['pos_embed_spatial'] = pos_tokens | |
utils.load_state_dict(model, checkpoint_model, prefix=args.model_prefix) | |
model.to(device) | |
model_ema = None | |
if args.model_ema: | |
model_ema = ModelEma( | |
model, | |
decay=args.model_ema_decay, | |
device='cpu' if args.model_ema_force_cpu else '', | |
resume='') | |
print("Using EMA with decay = %.8f" % args.model_ema_decay) | |
model_without_ddp = model | |
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) | |
print("Model = %s" % str(model_without_ddp)) | |
print('number of params:', n_parameters) | |
total_batch_size = args.batch_size * args.update_freq * utils.get_world_size() | |
num_training_steps_per_epoch = len(dataset_train) // total_batch_size | |
args.lr = args.lr * total_batch_size * args.num_sample / 256 | |
args.min_lr = args.min_lr * total_batch_size * args.num_sample / 256 | |
args.warmup_lr = args.warmup_lr * total_batch_size * args.num_sample / 256 | |
print("LR = %.8f" % args.lr) | |
print("Batch size = %d" % total_batch_size) | |
print("Repeated sample = %d" % args.num_sample) | |
print("Update frequent = %d" % args.update_freq) | |
print("Number of training examples = %d" % len(dataset_train)) | |
print("Number of training training per epoch = %d" % num_training_steps_per_epoch) | |
num_layers = model_without_ddp.get_num_layers() | |
if args.layer_decay < 1.0: | |
assigner = LayerDecayValueAssigner(list(args.layer_decay ** (num_layers + 1 - i) for i in range(num_layers + 2))) | |
else: | |
assigner = None | |
if assigner is not None: | |
print("Assigned values = %s" % str(assigner.values)) | |
skip_weight_decay_list = model.no_weight_decay() | |
print("Skip weight decay list: ", skip_weight_decay_list) | |
if args.enable_deepspeed: | |
loss_scaler = None | |
optimizer_params = get_parameter_groups( | |
model, args.weight_decay, skip_weight_decay_list, | |
assigner.get_layer_id if assigner is not None else None, | |
assigner.get_scale if assigner is not None else None) | |
model, optimizer, _, _ = ds_init( | |
args=args, model=model, model_parameters=optimizer_params, dist_init_required=not args.distributed, | |
) | |
print("model.gradient_accumulation_steps() = %d" % model.gradient_accumulation_steps()) | |
assert model.gradient_accumulation_steps() == args.update_freq | |
else: | |
if args.distributed: | |
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True) | |
model_without_ddp = model.module | |
optimizer = create_optimizer( | |
args, model_without_ddp, skip_list=skip_weight_decay_list, | |
get_num_layer=assigner.get_layer_id if assigner is not None else None, | |
get_layer_scale=assigner.get_scale if assigner is not None else None) | |
loss_scaler = NativeScaler() | |
print("Use step level LR scheduler!") | |
lr_schedule_values = utils.cosine_scheduler( | |
args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch, | |
warmup_epochs=args.warmup_epochs, start_warmup_value=args.warmup_lr, warmup_steps=args.warmup_steps, | |
) | |
if args.weight_decay_end is None: | |
args.weight_decay_end = args.weight_decay | |
wd_schedule_values = utils.cosine_scheduler( | |
args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch) | |
print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values))) | |
if mixup_fn is not None: | |
# smoothing is handled with mixup label transform | |
criterion = SoftTargetCrossEntropy() | |
elif args.smoothing > 0.: | |
criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing) | |
else: | |
criterion = torch.nn.CrossEntropyLoss() | |
print("criterion = %s" % str(criterion)) | |
ceph_args = { | |
'use_ceph_checkpoint': args.use_ceph_checkpoint, | |
'ceph_checkpoint_prefix': args.ceph_checkpoint_prefix, | |
'ckpt_path_split': args.ckpt_path_split, | |
'local_rank': args.gpu, | |
} | |
if ceph_args['use_ceph_checkpoint']: | |
print("Will automatically upload model on ceph") | |
assert ceph_args['ceph_checkpoint_prefix'] != '', "Should set prefix for ceph checkpoint!" | |
utils.auto_load_model( | |
args=args, model=model, model_without_ddp=model_without_ddp, | |
optimizer=optimizer, loss_scaler=loss_scaler, model_ema=model_ema, | |
ceph_args=ceph_args, | |
) | |
print(f"Use bf16 {args.bf16}") | |
if args.eval: | |
preds_file = os.path.join(args.output_dir, str(global_rank) + '.txt') | |
test_stats = final_test(data_loader_test, model, device, preds_file, ds=args.enable_deepspeed, bf16=args.bf16) | |
torch.distributed.barrier() | |
if global_rank == 0: | |
print("Start merging results...") | |
final_top1 ,final_top5 = merge(args.output_dir, num_tasks) | |
print(f"Accuracy of the network on the {len(dataset_test)} test videos: Top-1: {final_top1:.2f}%, Top-5: {final_top5:.2f}%") | |
log_stats = {'Final top-1': final_top1, | |
'Final Top-5': final_top5} | |
if args.output_dir and utils.is_main_process(): | |
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: | |
f.write(json.dumps(log_stats) + "\n") | |
exit(0) | |
print(f"Start training for {args.epochs} epochs") | |
start_time = time.time() | |
max_accuracy = 0.0 | |
for epoch in range(args.start_epoch, args.epochs): | |
if args.distributed: | |
data_loader_train.sampler.set_epoch(epoch) | |
if log_writer is not None: | |
log_writer.set_step(epoch * num_training_steps_per_epoch * args.update_freq) | |
train_stats = train_one_epoch( | |
model, criterion, data_loader_train, optimizer, | |
device, epoch, loss_scaler, args.clip_grad, model_ema, mixup_fn, | |
log_writer=log_writer, start_steps=epoch * num_training_steps_per_epoch, | |
lr_schedule_values=lr_schedule_values, wd_schedule_values=wd_schedule_values, | |
num_training_steps_per_epoch=num_training_steps_per_epoch, update_freq=args.update_freq, | |
bf16=args.bf16 | |
) | |
if args.output_dir and args.save_ckpt: | |
# if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs: | |
# utils.save_model( | |
# args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, | |
# loss_scaler=loss_scaler, epoch=epoch, model_ema=model_ema, | |
# ceph_args=ceph_args, | |
# ) | |
utils.save_model( | |
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, | |
loss_scaler=loss_scaler, epoch=epoch, model_name='latest', model_ema=model_ema, | |
ceph_args=ceph_args, | |
) | |
if data_loader_val is not None: | |
test_stats = validation_one_epoch(data_loader_val, model, device, ds=args.enable_deepspeed, bf16=args.bf16) | |
timestep = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) | |
print(f"[{timestep}] Accuracy of the network on the {len(dataset_val)} val videos: {test_stats['acc1']:.1f}%") | |
if max_accuracy < test_stats["acc1"]: | |
max_accuracy = test_stats["acc1"] | |
if args.output_dir and args.save_ckpt: | |
utils.save_model( | |
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, | |
loss_scaler=loss_scaler, epoch=epoch, model_name='best', model_ema=model_ema, | |
ceph_args=ceph_args, | |
) | |
print(f'Max accuracy: {max_accuracy:.2f}%') | |
if log_writer is not None: | |
log_writer.update(val_acc1=test_stats['acc1'], head="perf", step=epoch) | |
log_writer.update(val_acc5=test_stats['acc5'], head="perf", step=epoch) | |
log_writer.update(val_loss=test_stats['loss'], head="perf", step=epoch) | |
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, | |
**{f'val_{k}': v for k, v in test_stats.items()}, | |
'epoch': epoch, | |
'n_parameters': n_parameters} | |
else: | |
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, | |
'epoch': epoch, | |
'n_parameters': n_parameters} | |
if args.output_dir and utils.is_main_process(): | |
if log_writer is not None: | |
log_writer.flush() | |
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: | |
f.write(json.dumps(log_stats) + "\n") | |
preds_file = os.path.join(args.output_dir, str(global_rank) + '.txt') | |
if args.test_best: | |
print("Auto testing the best model") | |
args.eval = True | |
utils.auto_load_model( | |
args=args, model=model, model_without_ddp=model_without_ddp, | |
optimizer=optimizer, loss_scaler=loss_scaler, model_ema=model_ema, | |
ceph_args=ceph_args, | |
) | |
test_stats = final_test(data_loader_test, model, device, preds_file, ds=args.enable_deepspeed, bf16=args.bf16) | |
torch.distributed.barrier() | |
if global_rank == 0: | |
print("Start merging results...") | |
final_top1 ,final_top5 = merge(args.output_dir, num_tasks) | |
print(f"Accuracy of the network on the {len(dataset_test)} test videos: Top-1: {final_top1:.2f}%, Top-5: {final_top5:.2f}%") | |
log_stats = {'Final top-1': final_top1, | |
'Final Top-5': final_top5} | |
if args.output_dir and utils.is_main_process(): | |
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: | |
f.write(json.dumps(log_stats) + "\n") | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
print('Training time {}'.format(total_time_str)) | |
if __name__ == '__main__': | |
opts, ds_init = get_args() | |
if opts.output_dir: | |
Path(opts.output_dir).mkdir(parents=True, exist_ok=True) | |
main(opts, ds_init) | |