mazpie's picture
Initial commit
2d9a728
raw
history blame
6.25 kB
"""
Copyright (c) Microsoft Corporation.
Licensed under the MIT license.
distributed API using Horovod
Modified from OpenNMT's native pytorch distributed utils
(https://github.com/OpenNMT/OpenNMT-py)
"""
import math
import pickle
import torch
import torch.distributed as dist
from time import time
from torch.autograd import Function
from torch.utils.data.distributed import DistributedSampler
class ddp_allgather_with_grads(Function):
@staticmethod
def forward(ctx, x):
tmp_input = x.cuda()
size = torch.tensor(tmp_input.shape[0]).cuda()
size_list = [torch.zeros_like(size) for i in range(dist.get_world_size())]
dist.all_gather(size_list, size)
max_size = max(size_list).item()
padding_size = max_size - size
if padding_size > 0 :
padding_tensor = torch.zeros(padding_size,*tmp_input.shape[1:]).to(tmp_input)
tmp_input = torch.cat((tmp_input, padding_tensor), dim = 0)
tmp_list = [torch.zeros_like(tmp_input) for i in range(dist.get_world_size())]
dist.all_gather(tmp_list, tmp_input)
ctx.size = size_list
output = []
for t, s in zip(tmp_list, size_list):
output.append(t[:s])
output = torch.cat(output,dim=0)
output.requires_grad = True
return output
@staticmethod
def backward(ctx, grad_output):
grad_x = None
if grad_output is not None:
grad_output.detach()
#grad_x = grad_output.chunk(dist.get_world_size(),dim=0)[dist.get_rank()]
start = sum(ctx.size[:dist.get_rank()])
end = start + ctx.size[dist.get_rank()]
grad_x = grad_output[start:end]
return grad_x
def ddp_allgather(input):
tmp_input = input.cuda()
size = torch.tensor(tmp_input.shape[0]).cuda()
size_list = [torch.zeros_like(size) for i in range(dist.get_world_size())]
dist.all_gather(size_list, size)
max_size = max(size_list).item()
padding_size = max_size - size
if padding_size > 0 :
padding_tensor = torch.zeros(padding_size,*tmp_input.shape[1:]).to(tmp_input)
tmp_input = torch.cat((tmp_input, padding_tensor), dim = 0)
tmp_list = [torch.zeros_like(tmp_input) for i in range(dist.get_world_size())]
dist.all_gather(tmp_list, tmp_input)
output = []
for t, s in zip(tmp_list, size_list):
output.append(t[:s])
output = torch.cat(output,dim=0)
return output
def _encode(enc, max_size, use_max_size=False):
enc_size = len(enc)
enc_byte = max(math.floor(math.log(max_size, 256)+1), 1)
if use_max_size:
# this is used for broadcasting
buffer_ = torch.cuda.ByteTensor(max_size+enc_byte)
else:
buffer_ = torch.cuda.ByteTensor(enc_size+enc_byte)
remainder = enc_size
for i in range(enc_byte):
base = 256 ** (enc_byte-i-1)
buffer_[i] = remainder // base
remainder %= base
buffer_[enc_byte:enc_byte+enc_size] = torch.ByteTensor(list(enc))
return buffer_, enc_byte
def _decode(buffer_, enc_byte):
size = sum(256 ** (enc_byte-i-1) * buffer_[i].item()
for i in range(enc_byte))
bytes_list = bytes(buffer_[enc_byte:enc_byte+size].tolist())
shift = size + enc_byte
return bytes_list, shift
_BUFFER_SIZE = 4096
def all_gather_list(data):
"""Gathers arbitrary data from all nodes into a list."""
enc = pickle.dumps(data)
enc_size = len(enc)
max_size = ddp_allgather(torch.tensor([enc_size]).cuda()).max().item()
in_buffer, enc_byte = _encode(enc, max_size)
out_buffer = ddp_allgather(in_buffer[:enc_byte+enc_size])
results = []
for _ in range(dist.get_world_size()):
bytes_list, shift = _decode(out_buffer, enc_byte)
out_buffer = out_buffer[shift:]
result = pickle.loads(bytes_list)
results.append(result)
return results
def any_broadcast(data, root_rank):
"""broadcast arbitrary data from root_rank to all nodes."""
enc = pickle.dumps(data)
max_size = ddp_allgather(torch.tensor([len(enc)]).cuda()).max().item()
buffer_, enc_byte = _encode(enc, max_size, use_max_size=True)
dist.broadcast(buffer_, root_rank)
bytes_list, _ = _decode(buffer_, enc_byte)
result = pickle.loads(bytes_list)
return result
class DistributedSampler_wopadding(DistributedSampler):
def __iter__(self):
if self.shuffle:
# deterministically shuffle based on epoch and seed
g = torch.Generator()
g.manual_seed(self.seed + self.epoch)
indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type]
else:
indices = list(range(len(self.dataset))) # type: ignore[arg-type]
if self.drop_last:
indices = indices[:self.total_size]
#assert len(indices) == self.total_size
# subsample
indices = indices[self.rank:len(indices):self.num_replicas]
# assert len(indices) == self.num_samples
return iter(indices)
class GatherLayer(torch.autograd.Function):
"""
Gather tensors from all workers with support for backward propagation:
This implementation does not cut the gradients as torch.distributed.all_gather does.
"""
@staticmethod
def forward(ctx, x):
output = [
torch.zeros_like(x) for _ in range(torch.distributed.get_world_size())
]
torch.distributed.all_gather(output, x)
return tuple(output)
@staticmethod
def backward(ctx, *grads):
all_gradients = torch.stack(grads)
torch.distributed.all_reduce(all_gradients)
return all_gradients[torch.distributed.get_rank()]
def all_gather_with_grad(tensors):
"""
Performs all_gather operation on the provided tensors.
Graph remains connected for backward grad computation.
"""
# Queue the gathered tensors
world_size = torch.distributed.get_world_size()
# There is no need for reduction in the single-proc case
if world_size == 1:
return tensors
# tensor_all = GatherLayer.apply(tensors)
tensor_all = GatherLayer.apply(tensors)
return torch.cat(tensor_all, dim=0)