Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import io | |
import os | |
import json | |
import logging | |
import random | |
import time | |
from collections import defaultdict, deque | |
import datetime | |
from pathlib import Path | |
from typing import List, Union | |
import torch | |
import torch.distributed as dist | |
from .distributed import is_dist_avail_and_initialized | |
logger = logging.getLogger(__name__) | |
class SmoothedValue(object): | |
"""Track a series of values and provide access to smoothed values over a | |
window or the global series average. | |
""" | |
def __init__(self, window=20, fmt=None): | |
if fmt is None: | |
fmt = "{median:.4f} ({global_avg:.4f})" | |
self.deque = deque(maxlen=window) | |
self.total = 0.0 | |
self.count = 0 | |
self.fmt = fmt | |
def update(self, value, n=1): | |
self.deque.append(value) | |
self.count += n | |
self.total += value * n | |
def synchronize_between_processes(self): | |
""" | |
Warning: does not synchronize the deque! | |
""" | |
if not is_dist_avail_and_initialized(): | |
return | |
t = torch.tensor([self.count, self.total], | |
dtype=torch.float64, device='cuda') | |
dist.barrier() | |
dist.all_reduce(t) | |
t = t.tolist() | |
self.count = int(t[0]) | |
self.total = t[1] | |
def median(self): | |
d = torch.tensor(list(self.deque)) | |
return d.median().item() | |
def avg(self): | |
d = torch.tensor(list(self.deque), dtype=torch.float32) | |
return d.mean().item() | |
def global_avg(self): | |
return self.total / self.count | |
def max(self): | |
return max(self.deque) | |
def value(self): | |
return self.deque[-1] | |
def __str__(self): | |
return self.fmt.format( | |
median=self.median, | |
avg=self.avg, | |
global_avg=self.global_avg, | |
max=self.max, | |
value=self.value) | |
class MetricLogger(object): | |
def __init__(self, delimiter="\t"): | |
self.meters = defaultdict(SmoothedValue) | |
self.delimiter = delimiter | |
def update(self, **kwargs): | |
for k, v in kwargs.items(): | |
if isinstance(v, torch.Tensor): | |
v = v.item() | |
assert isinstance(v, (float, int)) | |
self.meters[k].update(v) | |
def __getattr__(self, attr): | |
if attr in self.meters: | |
return self.meters[attr] | |
if attr in self.__dict__: | |
return self.__dict__[attr] | |
raise AttributeError("'{}' object has no attribute '{}'".format( | |
type(self).__name__, attr)) | |
def __str__(self): | |
loss_str = [] | |
for name, meter in self.meters.items(): | |
if meter.count == 0: # skip empty meter | |
loss_str.append( | |
"{}: {}".format(name, "No data") | |
) | |
else: | |
loss_str.append( | |
"{}: {}".format(name, str(meter)) | |
) | |
return self.delimiter.join(loss_str) | |
def global_avg(self): | |
loss_str = [] | |
for name, meter in self.meters.items(): | |
if meter.count == 0: | |
loss_str.append( | |
"{}: {}".format(name, "No data") | |
) | |
else: | |
loss_str.append( | |
"{}: {:.4f}".format(name, meter.global_avg) | |
) | |
return self.delimiter.join(loss_str) | |
def get_global_avg_dict(self, prefix=""): | |
"""include a separator (e.g., `/`, or "_") at the end of `prefix`""" | |
d = {f"{prefix}{k}": m.global_avg if m.count > 0 else 0. for k, m in self.meters.items()} | |
return d | |
def synchronize_between_processes(self): | |
for meter in self.meters.values(): | |
meter.synchronize_between_processes() | |
def add_meter(self, name, meter): | |
self.meters[name] = meter | |
def log_every(self, iterable, log_freq, header=None): | |
i = 0 | |
if not header: | |
header = '' | |
start_time = time.time() | |
end = time.time() | |
iter_time = SmoothedValue(fmt='{avg:.4f}') | |
data_time = SmoothedValue(fmt='{avg:.4f}') | |
space_fmt = ':' + str(len(str(len(iterable)))) + 'd' | |
log_msg = [ | |
header, | |
'[{0' + space_fmt + '}/{1}]', | |
'eta: {eta}', | |
'{meters}', | |
'time: {time}', | |
'data: {data}' | |
] | |
if torch.cuda.is_available(): | |
log_msg.append('max mem: {memory:.0f} res mem: {res_mem:.0f}') | |
log_msg = self.delimiter.join(log_msg) | |
MB = 1024.0 * 1024.0 | |
for obj in iterable: | |
data_time.update(time.time() - end) | |
yield obj | |
iter_time.update(time.time() - end) | |
if i % log_freq == 0 or i == len(iterable) - 1: | |
eta_seconds = iter_time.global_avg * (len(iterable) - i) | |
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) | |
if torch.cuda.is_available(): | |
logger.info(log_msg.format( | |
i, len(iterable), eta=eta_string, | |
meters=str(self), | |
time=str(iter_time), data=str(data_time), | |
memory=torch.cuda.max_memory_allocated() / MB, | |
res_mem=torch.cuda.max_memory_reserved() / MB, | |
)) | |
else: | |
logger.info(log_msg.format( | |
i, len(iterable), eta=eta_string, | |
meters=str(self), | |
time=str(iter_time), data=str(data_time))) | |
i += 1 | |
end = time.time() | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
logger.info('{} Total time: {} ({:.4f} s / it)'.format( | |
header, total_time_str, total_time / len(iterable))) | |
class AttrDict(dict): | |
def __init__(self, *args, **kwargs): | |
super(AttrDict, self).__init__(*args, **kwargs) | |
self.__dict__ = self | |
def compute_acc(logits, label, reduction='mean'): | |
ret = (torch.argmax(logits, dim=1) == label).float() | |
if reduction == 'none': | |
return ret.detach() | |
elif reduction == 'mean': | |
return ret.mean().item() | |
def compute_n_params(model, return_str=True): | |
tot = 0 | |
for p in model.parameters(): | |
w = 1 | |
for x in p.shape: | |
w *= x | |
tot += w | |
if return_str: | |
if tot >= 1e6: | |
return '{:.1f}M'.format(tot / 1e6) | |
else: | |
return '{:.1f}K'.format(tot / 1e3) | |
else: | |
return tot | |
def setup_seed(seed): | |
torch.manual_seed(seed) | |
np.random.seed(seed) | |
random.seed(seed) | |
def remove_files_if_exist(file_paths): | |
for fp in file_paths: | |
if os.path.isfile(fp): | |
os.remove(fp) | |
def save_json(data, filename, save_pretty=False, sort_keys=False): | |
with open(filename, "w") as f: | |
if save_pretty: | |
f.write(json.dumps(data, indent=4, sort_keys=sort_keys)) | |
else: | |
json.dump(data, f) | |
def load_json(filename): | |
with open(filename, "r") as f: | |
return json.load(f) | |
def flat_list_of_lists(l): | |
"""flatten a list of lists [[1,2], [3,4]] to [1,2,3,4]""" | |
return [item for sublist in l for item in sublist] | |
def find_files_by_suffix_recursively(root: str, suffix: Union[str, List[str]]): | |
""" | |
Args: | |
root: path to the directory to start search files | |
suffix: any str as suffix, or can match multiple such strings | |
when input is List[str]. | |
Example 1, e.g., suffix: `.jpg` or [`.jpg`, `.png`] | |
Example 2, e.g., use a `*` in the `suffix`: `START*.jpg.`. | |
""" | |
if isinstance(suffix, str): | |
suffix = [suffix, ] | |
filepaths = flat_list_of_lists( | |
[list(Path(root).rglob(f"*{e}")) for e in suffix]) | |
return filepaths | |
def match_key_and_shape(state_dict1, state_dict2): | |
keys1 = set(state_dict1.keys()) | |
keys2 = set(state_dict2.keys()) | |
print(f"keys1 - keys2: {keys1 - keys2}") | |
print(f"keys2 - keys1: {keys2 - keys1}") | |
mismatch = 0 | |
for k in list(keys1): | |
if state_dict1[k].shape != state_dict2[k].shape: | |
print( | |
f"k={k}, state_dict1[k].shape={state_dict1[k].shape}, state_dict2[k].shape={state_dict2[k].shape}") | |
mismatch += 1 | |
print(f"mismatch {mismatch}") | |
def merge_dicts(list_dicts): | |
merged_dict = list_dicts[0].copy() | |
for i in range(1, len(list_dicts)): | |
merged_dict.update(list_dicts[i]) | |
return merged_dict | |