Spaces:
Runtime error
Runtime error
File size: 2,854 Bytes
038c995 728e0e5 1566eee 038c995 1566eee 038c995 728e0e5 5ae6761 728e0e5 5ae6761 728e0e5 5ae6761 728e0e5 5ae6761 a686ae2 5ae6761 728e0e5 1c7b8ac 728e0e5 38f0d16 728e0e5 1c7b8ac 728e0e5 38f0d16 728e0e5 1c7b8ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
title: Multi Label Precision Recall Accuracy Fscore
tags:
- evaluate
- metric
description: >-
Implementation of example based evaluation metrics for multi-label
classification presented in Zhang and Zhou (2014).
sdk: gradio
sdk_version: 5.4.0
app_file: app.py
pinned: false
---
# Metric Card for Multi Label Precision Recall Accuracy Fscore
Implementation of example based evaluation metrics for multi-label classification presented in Zhang and Zhou (2014).
## How to Use
>>> multi_label_precision_recall_accuracy_fscore = evaluate.load("mdocekal/multi_label_precision_recall_accuracy_fscore")
>>> results = multi_label_precision_recall_accuracy_fscore.compute(
predictions=[
["0", "1"],
["1", "2"],
["0", "1", "2"],
],
references=[
["0", "1"],
["1", "2"],
["0", "1", "2"],
]
)
>>> print(results)
{
"precision": 1.0,
"recall": 1.0,
"accuracy": 1.0,
"fscore": 1.0
}
There is also multiset configuration available, which allows to calculate the metrics for multi-label classification with repeated labels.
It uses the same definition as in previous case, but it works with multiset of labels. Thus, intersection, union, and cardinality for multisets are used instead.
>>> multi_label_precision_recall_accuracy_fscore = evaluate.load("mdocekal/multi_label_precision_recall_accuracy_fscore", config_name="multiset")
>>> results = multi_label_precision_recall_accuracy_fscore.compute(
predictions=[
[0, 1, 1]
],
references=[
[1, 0, 1, 1, 0, 0],
]
)
>>> print(results)
{
"precision": 1.0,
"recall": 0.5,
"accuracy": 0.5,
"fscore": 0.6666666666666666
}
### Inputs
- **predictions** *(list[Union[int,str]]): list of predictions to score. Each predictions should be a list of predicted labels*
- **references** *(list[Union[int,str]]): list of reference for each prediction. Each reference should be a list of reference labels*
### Output Values
This metric outputs a dictionary, containing:
- precision
- recall
- accuracy
- fscore
Ff prediction and reference are empty lists, the output will be:
```python
{
"precision": 1.0,
"recall": 1.0,
"accuracy": 1.0,
"fscore": 1.0
}
```
## Citation
```bibtex
@article{Zhang2014ARO,
title={A Review on Multi-Label Learning Algorithms},
author={Min-Ling Zhang and Zhi-Hua Zhou},
journal={IEEE Transactions on Knowledge and Data Engineering},
year={2014},
volume={26},
pages={1819-1837},
url={https://api.semanticscholar.org/CorpusID:1008003}
}
```
|