Spaces:
Runtime error
Runtime error
"""Modified from https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py | |
""" | |
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
import argparse | |
import gc | |
import logging | |
import math | |
import os | |
import pickle | |
import shutil | |
import sys | |
import accelerate | |
import diffusers | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
import transformers | |
from accelerate import Accelerator | |
from accelerate.logging import get_logger | |
from accelerate.state import AcceleratorState | |
from accelerate.utils import ProjectConfiguration, set_seed | |
from diffusers import AutoencoderKL, DDPMScheduler | |
from diffusers.models.embeddings import get_3d_rotary_pos_embed | |
from diffusers.optimization import get_scheduler | |
from diffusers.training_utils import EMAModel | |
from diffusers.utils import check_min_version, deprecate, is_wandb_available | |
from diffusers.utils.import_utils import is_xformers_available | |
from diffusers.utils.torch_utils import is_compiled_module | |
from einops import rearrange | |
from huggingface_hub import create_repo, upload_folder | |
from omegaconf import OmegaConf | |
from packaging import version | |
from PIL import Image | |
from torch.utils.data import RandomSampler | |
from torch.utils.tensorboard import SummaryWriter | |
from torchvision import transforms | |
from tqdm.auto import tqdm | |
from transformers import (BertModel, BertTokenizer, CLIPImageProcessor, | |
CLIPVisionModelWithProjection, MT5Tokenizer, | |
T5EncoderModel, T5Tokenizer) | |
from transformers.utils import ContextManagers | |
import datasets | |
current_file_path = os.path.abspath(__file__) | |
project_roots = [os.path.dirname(current_file_path), os.path.dirname(os.path.dirname(current_file_path))] | |
for project_root in project_roots: | |
sys.path.insert(0, project_root) if project_root not in sys.path else None | |
from cogvideox.data.bucket_sampler import (ASPECT_RATIO_512, | |
ASPECT_RATIO_RANDOM_CROP_512, | |
ASPECT_RATIO_RANDOM_CROP_PROB, | |
AspectRatioBatchImageVideoSampler, | |
RandomSampler, get_closest_ratio) | |
from cogvideox.data.dataset_image_video import (ImageVideoDataset, ImageVideoControlDataset, | |
ImageVideoSampler, | |
get_random_mask) | |
from cogvideox.models.autoencoder_magvit import AutoencoderKLCogVideoX | |
from cogvideox.models.transformer3d import CogVideoXTransformer3DModel | |
from cogvideox.pipeline.pipeline_cogvideox_control import \ | |
CogVideoX_Fun_Pipeline_Control | |
from cogvideox.utils.utils import get_video_to_video_latent, save_videos_grid | |
if is_wandb_available(): | |
import wandb | |
def get_random_downsample_ratio(sample_size, image_ratio=[], | |
all_choices=False, rng=None): | |
def _create_special_list(length): | |
if length == 1: | |
return [1.0] | |
if length >= 2: | |
first_element = 0.75 | |
remaining_sum = 1.0 - first_element | |
other_elements_value = remaining_sum / (length - 1) | |
special_list = [first_element] + [other_elements_value] * (length - 1) | |
return special_list | |
if sample_size >= 1536: | |
number_list = [1, 1.25, 1.5, 2, 2.5, 3] + image_ratio | |
elif sample_size >= 1024: | |
number_list = [1, 1.25, 1.5, 2] + image_ratio | |
elif sample_size >= 768: | |
number_list = [1, 1.25, 1.5] + image_ratio | |
elif sample_size >= 512: | |
number_list = [1] + image_ratio | |
else: | |
number_list = [1] | |
if all_choices: | |
return number_list | |
number_list_prob = np.array(_create_special_list(len(number_list))) | |
if rng is None: | |
return np.random.choice(number_list, p = number_list_prob) | |
else: | |
return rng.choice(number_list, p = number_list_prob) | |
def resize_mask(mask, latent, process_first_frame_only=True): | |
latent_size = latent.size() | |
batch_size, channels, num_frames, height, width = mask.shape | |
if process_first_frame_only: | |
target_size = list(latent_size[2:]) | |
target_size[0] = 1 | |
first_frame_resized = F.interpolate( | |
mask[:, :, 0:1, :, :], | |
size=target_size, | |
mode='trilinear', | |
align_corners=False | |
) | |
target_size = list(latent_size[2:]) | |
target_size[0] = target_size[0] - 1 | |
if target_size[0] != 0: | |
remaining_frames_resized = F.interpolate( | |
mask[:, :, 1:, :, :], | |
size=target_size, | |
mode='trilinear', | |
align_corners=False | |
) | |
resized_mask = torch.cat([first_frame_resized, remaining_frames_resized], dim=2) | |
else: | |
resized_mask = first_frame_resized | |
else: | |
target_size = list(latent_size[2:]) | |
resized_mask = F.interpolate( | |
mask, | |
size=target_size, | |
mode='trilinear', | |
align_corners=False | |
) | |
return resized_mask | |
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
check_min_version("0.18.0.dev0") | |
logger = get_logger(__name__, log_level="INFO") | |
def log_validation(vae, text_encoder, tokenizer, transformer3d, args, accelerator, weight_dtype, global_step): | |
try: | |
logger.info("Running validation... ") | |
transformer3d_val = CogVideoXTransformer3DModel.from_pretrained_2d( | |
args.pretrained_model_name_or_path, subfolder="transformer" | |
).to(weight_dtype) | |
transformer3d_val.load_state_dict(accelerator.unwrap_model(transformer3d).state_dict()) | |
pipeline = CogVideoX_Fun_Pipeline_Control.from_pretrained( | |
args.pretrained_model_name_or_path, | |
vae=accelerator.unwrap_model(vae).to(weight_dtype), | |
text_encoder=accelerator.unwrap_model(text_encoder), | |
tokenizer=tokenizer, | |
transformer=transformer3d_val, | |
torch_dtype=weight_dtype, | |
) | |
pipeline = pipeline.to(accelerator.device) | |
if args.seed is None: | |
generator = None | |
else: | |
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) | |
images = [] | |
for i in range(len(args.validation_prompts)): | |
with torch.no_grad(): | |
with torch.autocast("cuda", dtype=weight_dtype): | |
video_length = int(args.video_sample_n_frames // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1 if args.video_sample_n_frames != 1 else 1 | |
input_video, input_video_mask, clip_image = get_video_to_video_latent(args.validation_paths[i], video_length=video_length, sample_size=[args.video_sample_size, args.video_sample_size]) | |
sample = pipeline( | |
args.validation_prompts[i], | |
num_frames = video_length, | |
negative_prompt = "bad detailed", | |
height = args.video_sample_size, | |
width = args.video_sample_size, | |
generator = generator, | |
control_video = input_video, | |
).videos | |
os.makedirs(os.path.join(args.output_dir, "sample"), exist_ok=True) | |
save_videos_grid(sample, os.path.join(args.output_dir, f"sample/sample-{global_step}-{i}.gif")) | |
del pipeline | |
del transformer3d_val | |
gc.collect() | |
torch.cuda.empty_cache() | |
torch.cuda.ipc_collect() | |
return images | |
except Exception as e: | |
gc.collect() | |
torch.cuda.empty_cache() | |
torch.cuda.ipc_collect() | |
print(f"Eval error with info {e}") | |
return None | |
def linear_decay(initial_value, final_value, total_steps, current_step): | |
if current_step >= total_steps: | |
return final_value | |
current_step = max(0, current_step) | |
step_size = (final_value - initial_value) / total_steps | |
current_value = initial_value + step_size * current_step | |
return current_value | |
def generate_timestep_with_lognorm(low, high, shape, device="cpu", generator=None): | |
u = torch.normal(mean=0.0, std=1.0, size=shape, device=device, generator=generator) | |
t = 1 / (1 + torch.exp(-u)) * (high - low) + low | |
return torch.clip(t.to(torch.int32), low, high - 1) | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
parser.add_argument( | |
"--input_perturbation", type=float, default=0, help="The scale of input perturbation. Recommended 0.1." | |
) | |
parser.add_argument( | |
"--pretrained_model_name_or_path", | |
type=str, | |
default=None, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--revision", | |
type=str, | |
default=None, | |
required=False, | |
help="Revision of pretrained model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--variant", | |
type=str, | |
default=None, | |
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", | |
) | |
parser.add_argument( | |
"--train_data_dir", | |
type=str, | |
default=None, | |
help=( | |
"A folder containing the training data. " | |
), | |
) | |
parser.add_argument( | |
"--train_data_meta", | |
type=str, | |
default=None, | |
help=( | |
"A csv containing the training data. " | |
), | |
) | |
parser.add_argument( | |
"--max_train_samples", | |
type=int, | |
default=None, | |
help=( | |
"For debugging purposes or quicker training, truncate the number of training examples to this " | |
"value if set." | |
), | |
) | |
parser.add_argument( | |
"--validation_paths", | |
type=str, | |
default=None, | |
nargs="+", | |
help=("A set of control videos evaluated every `--validation_epochs` and logged to `--report_to`."), | |
) | |
parser.add_argument( | |
"--validation_prompts", | |
type=str, | |
default=None, | |
nargs="+", | |
help=("A set of prompts evaluated every `--validation_epochs` and logged to `--report_to`."), | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="sd-model-finetuned", | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
parser.add_argument( | |
"--cache_dir", | |
type=str, | |
default=None, | |
help="The directory where the downloaded models and datasets will be stored.", | |
) | |
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | |
parser.add_argument( | |
"--random_flip", | |
action="store_true", | |
help="whether to randomly flip images horizontally", | |
) | |
parser.add_argument( | |
"--use_came", | |
action="store_true", | |
help="whether to use came", | |
) | |
parser.add_argument( | |
"--multi_stream", | |
action="store_true", | |
help="whether to use cuda multi-stream", | |
) | |
parser.add_argument( | |
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." | |
) | |
parser.add_argument( | |
"--vae_mini_batch", type=int, default=32, help="mini batch size for vae." | |
) | |
parser.add_argument("--num_train_epochs", type=int, default=100) | |
parser.add_argument( | |
"--max_train_steps", | |
type=int, | |
default=None, | |
help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
) | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.", | |
) | |
parser.add_argument( | |
"--gradient_checkpointing", | |
action="store_true", | |
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
) | |
parser.add_argument( | |
"--learning_rate", | |
type=float, | |
default=1e-4, | |
help="Initial learning rate (after the potential warmup period) to use.", | |
) | |
parser.add_argument( | |
"--scale_lr", | |
action="store_true", | |
default=False, | |
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
) | |
parser.add_argument( | |
"--lr_scheduler", | |
type=str, | |
default="constant", | |
help=( | |
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
' "constant", "constant_with_warmup"]' | |
), | |
) | |
parser.add_argument( | |
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
) | |
parser.add_argument( | |
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." | |
) | |
parser.add_argument( | |
"--allow_tf32", | |
action="store_true", | |
help=( | |
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
), | |
) | |
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") | |
parser.add_argument( | |
"--non_ema_revision", | |
type=str, | |
default=None, | |
required=False, | |
help=( | |
"Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or" | |
" remote repository specified with --pretrained_model_name_or_path." | |
), | |
) | |
parser.add_argument( | |
"--dataloader_num_workers", | |
type=int, | |
default=0, | |
help=( | |
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
), | |
) | |
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
parser.add_argument( | |
"--prediction_type", | |
type=str, | |
default=None, | |
help="The prediction_type that shall be used for training. Choose between 'epsilon' or 'v_prediction' or leave `None`. If left to `None` the default prediction type of the scheduler: `noise_scheduler.config.prediciton_type` is chosen.", | |
) | |
parser.add_argument( | |
"--hub_model_id", | |
type=str, | |
default=None, | |
help="The name of the repository to keep in sync with the local `output_dir`.", | |
) | |
parser.add_argument( | |
"--logging_dir", | |
type=str, | |
default="logs", | |
help=( | |
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
), | |
) | |
parser.add_argument( | |
"--report_model_info", action="store_true", help="Whether or not to report more info about model (such as norm, grad)." | |
) | |
parser.add_argument( | |
"--mixed_precision", | |
type=str, | |
default=None, | |
choices=["no", "fp16", "bf16"], | |
help=( | |
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
), | |
) | |
parser.add_argument( | |
"--report_to", | |
type=str, | |
default="tensorboard", | |
help=( | |
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
), | |
) | |
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
parser.add_argument( | |
"--checkpointing_steps", | |
type=int, | |
default=500, | |
help=( | |
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" | |
" training using `--resume_from_checkpoint`." | |
), | |
) | |
parser.add_argument( | |
"--checkpoints_total_limit", | |
type=int, | |
default=None, | |
help=("Max number of checkpoints to store."), | |
) | |
parser.add_argument( | |
"--resume_from_checkpoint", | |
type=str, | |
default=None, | |
help=( | |
"Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
), | |
) | |
parser.add_argument( | |
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." | |
) | |
parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.") | |
parser.add_argument( | |
"--validation_epochs", | |
type=int, | |
default=5, | |
help="Run validation every X epochs.", | |
) | |
parser.add_argument( | |
"--validation_steps", | |
type=int, | |
default=2000, | |
help="Run validation every X steps.", | |
) | |
parser.add_argument( | |
"--tracker_project_name", | |
type=str, | |
default="text2image-fine-tune", | |
help=( | |
"The `project_name` argument passed to Accelerator.init_trackers for" | |
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" | |
), | |
) | |
parser.add_argument( | |
"--snr_loss", action="store_true", help="Whether or not to use snr_loss." | |
) | |
parser.add_argument( | |
"--not_sigma_loss", action="store_true", help="Whether or not to not use sigma_loss." | |
) | |
parser.add_argument( | |
"--enable_text_encoder_in_dataloader", action="store_true", help="Whether or not to use text encoder in dataloader." | |
) | |
parser.add_argument( | |
"--enable_bucket", action="store_true", help="Whether enable bucket sample in datasets." | |
) | |
parser.add_argument( | |
"--random_ratio_crop", action="store_true", help="Whether enable random ratio crop sample in datasets." | |
) | |
parser.add_argument( | |
"--random_frame_crop", action="store_true", help="Whether enable random frame crop sample in datasets." | |
) | |
parser.add_argument( | |
"--random_hw_adapt", action="store_true", help="Whether enable random adapt height and width in datasets." | |
) | |
parser.add_argument( | |
"--training_with_video_token_length", action="store_true", help="The training stage of the model in training.", | |
) | |
parser.add_argument( | |
"--motion_sub_loss", action="store_true", help="Whether enable motion sub loss." | |
) | |
parser.add_argument( | |
"--motion_sub_loss_ratio", type=float, default=0.25, help="The ratio of motion sub loss." | |
) | |
parser.add_argument( | |
"--train_sampling_steps", | |
type=int, | |
default=1000, | |
help="Run train_sampling_steps.", | |
) | |
parser.add_argument( | |
"--keep_all_node_same_token_length", | |
action="store_true", | |
help="Reference of the length token.", | |
) | |
parser.add_argument( | |
"--token_sample_size", | |
type=int, | |
default=512, | |
help="Sample size of the token.", | |
) | |
parser.add_argument( | |
"--video_sample_size", | |
type=int, | |
default=512, | |
help="Sample size of the video.", | |
) | |
parser.add_argument( | |
"--image_sample_size", | |
type=int, | |
default=512, | |
help="Sample size of the video.", | |
) | |
parser.add_argument( | |
"--video_sample_stride", | |
type=int, | |
default=4, | |
help="Sample stride of the video.", | |
) | |
parser.add_argument( | |
"--video_sample_n_frames", | |
type=int, | |
default=17, | |
help="Num frame of video.", | |
) | |
parser.add_argument( | |
"--video_repeat", | |
type=int, | |
default=0, | |
help="Num of repeat video.", | |
) | |
parser.add_argument( | |
"--transformer_path", | |
type=str, | |
default=None, | |
help=("If you want to load the weight from other transformers, input its path."), | |
) | |
parser.add_argument( | |
"--vae_path", | |
type=str, | |
default=None, | |
help=("If you want to load the weight from other vaes, input its path."), | |
) | |
parser.add_argument( | |
'--trainable_modules', | |
nargs='+', | |
help='Enter a list of trainable modules' | |
) | |
parser.add_argument( | |
'--trainable_modules_low_learning_rate', | |
nargs='+', | |
default=[], | |
help='Enter a list of trainable modules with lower learning rate' | |
) | |
parser.add_argument( | |
'--tokenizer_max_length', | |
type=int, | |
default=226, | |
help='Max length of tokenizer' | |
) | |
parser.add_argument( | |
"--use_deepspeed", action="store_true", help="Whether or not to use deepspeed." | |
) | |
parser.add_argument( | |
"--low_vram", action="store_true", help="Whether enable low_vram mode." | |
) | |
parser.add_argument( | |
"--abnormal_norm_clip_start", | |
type=int, | |
default=1000, | |
help=( | |
'When do we start doing additional processing on abnormal gradients. ' | |
), | |
) | |
parser.add_argument( | |
"--initial_grad_norm_ratio", | |
type=int, | |
default=5, | |
help=( | |
'The initial gradient is relative to the multiple of the max_grad_norm. ' | |
), | |
) | |
args = parser.parse_args() | |
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
if env_local_rank != -1 and env_local_rank != args.local_rank: | |
args.local_rank = env_local_rank | |
# default to using the same revision for the non-ema model if not specified | |
if args.non_ema_revision is None: | |
args.non_ema_revision = args.revision | |
return args | |
def main(): | |
args = parse_args() | |
if args.report_to == "wandb" and args.hub_token is not None: | |
raise ValueError( | |
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." | |
" Please use `huggingface-cli login` to authenticate with the Hub." | |
) | |
if args.non_ema_revision is not None: | |
deprecate( | |
"non_ema_revision!=None", | |
"0.15.0", | |
message=( | |
"Downloading 'non_ema' weights from revision branches of the Hub is deprecated. Please make sure to" | |
" use `--variant=non_ema` instead." | |
), | |
) | |
logging_dir = os.path.join(args.output_dir, args.logging_dir) | |
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) | |
accelerator = Accelerator( | |
gradient_accumulation_steps=args.gradient_accumulation_steps, | |
mixed_precision=args.mixed_precision, | |
log_with=args.report_to, | |
project_config=accelerator_project_config, | |
) | |
if accelerator.is_main_process: | |
writer = SummaryWriter(log_dir=logging_dir) | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
logger.info(accelerator.state, main_process_only=False) | |
if accelerator.is_local_main_process: | |
datasets.utils.logging.set_verbosity_warning() | |
transformers.utils.logging.set_verbosity_warning() | |
diffusers.utils.logging.set_verbosity_info() | |
else: | |
datasets.utils.logging.set_verbosity_error() | |
transformers.utils.logging.set_verbosity_error() | |
diffusers.utils.logging.set_verbosity_error() | |
# If passed along, set the training seed now. | |
if args.seed is not None: | |
set_seed(args.seed) | |
rng = np.random.default_rng(np.random.PCG64(args.seed + accelerator.process_index)) | |
torch_rng = torch.Generator(accelerator.device).manual_seed(args.seed + accelerator.process_index) | |
else: | |
rng = None | |
torch_rng = None | |
index_rng = np.random.default_rng(np.random.PCG64(43)) | |
print(f"Init rng with seed {args.seed + accelerator.process_index}. Process_index is {accelerator.process_index}") | |
# Handle the repository creation | |
if accelerator.is_main_process: | |
if args.output_dir is not None: | |
os.makedirs(args.output_dir, exist_ok=True) | |
# For mixed precision training we cast all non-trainable weigths (vae, non-lora text_encoder and non-lora transformer3d) to half-precision | |
# as these weights are only used for inference, keeping weights in full precision is not required. | |
weight_dtype = torch.float32 | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
args.mixed_precision = accelerator.mixed_precision | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
args.mixed_precision = accelerator.mixed_precision | |
# Load scheduler, tokenizer and models. | |
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
tokenizer = T5Tokenizer.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision | |
) | |
def deepspeed_zero_init_disabled_context_manager(): | |
""" | |
returns either a context list that includes one that will disable zero.Init or an empty context list | |
""" | |
deepspeed_plugin = AcceleratorState().deepspeed_plugin if accelerate.state.is_initialized() else None | |
if deepspeed_plugin is None: | |
return [] | |
return [deepspeed_plugin.zero3_init_context_manager(enable=False)] | |
# Currently Accelerate doesn't know how to handle multiple models under Deepspeed ZeRO stage 3. | |
# For this to work properly all models must be run through `accelerate.prepare`. But accelerate | |
# will try to assign the same optimizer with the same weights to all models during | |
# `deepspeed.initialize`, which of course doesn't work. | |
# | |
# For now the following workaround will partially support Deepspeed ZeRO-3, by excluding the 2 | |
# frozen models from being partitioned during `zero.Init` which gets called during | |
# `from_pretrained` So CLIPTextModel and AutoencoderKL will not enjoy the parameter sharding | |
# across multiple gpus and only UNet2DConditionModel will get ZeRO sharded. | |
with ContextManagers(deepspeed_zero_init_disabled_context_manager()): | |
text_encoder = T5EncoderModel.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant, | |
torch_dtype=weight_dtype | |
) | |
vae = AutoencoderKLCogVideoX.from_pretrained( | |
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant | |
) | |
transformer3d = CogVideoXTransformer3DModel.from_pretrained_2d( | |
args.pretrained_model_name_or_path, subfolder="transformer" | |
) | |
# Freeze vae and text_encoder and set transformer3d to trainable | |
vae.requires_grad_(False) | |
text_encoder.requires_grad_(False) | |
transformer3d.requires_grad_(False) | |
if args.transformer_path is not None: | |
print(f"From checkpoint: {args.transformer_path}") | |
if args.transformer_path.endswith("safetensors"): | |
from safetensors.torch import load_file, safe_open | |
state_dict = load_file(args.transformer_path) | |
else: | |
state_dict = torch.load(args.transformer_path, map_location="cpu") | |
state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict | |
m, u = transformer3d.load_state_dict(state_dict, strict=False) | |
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}") | |
assert len(u) == 0 | |
if args.vae_path is not None: | |
print(f"From checkpoint: {args.vae_path}") | |
if args.vae_path.endswith("safetensors"): | |
from safetensors.torch import load_file, safe_open | |
state_dict = load_file(args.vae_path) | |
else: | |
state_dict = torch.load(args.vae_path, map_location="cpu") | |
state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict | |
m, u = vae.load_state_dict(state_dict, strict=False) | |
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}") | |
assert len(u) == 0 | |
# A good trainable modules is showed below now. | |
# For 3D Patch: trainable_modules = ['ff.net', 'pos_embed', 'attn2', 'proj_out', 'timepositionalencoding', 'h_position', 'w_position'] | |
# For 2D Patch: trainable_modules = ['ff.net', 'attn2', 'timepositionalencoding', 'h_position', 'w_position'] | |
transformer3d.train() | |
if accelerator.is_main_process: | |
accelerator.print( | |
f"Trainable modules '{args.trainable_modules}'." | |
) | |
for name, param in transformer3d.named_parameters(): | |
for trainable_module_name in args.trainable_modules + args.trainable_modules_low_learning_rate: | |
if trainable_module_name in name: | |
param.requires_grad = True | |
break | |
# Create EMA for the transformer3d. | |
if args.use_ema: | |
ema_transformer3d = CogVideoXTransformer3DModel.from_pretrained_2d( | |
args.pretrained_model_name_or_path, subfolder="transformer" | |
) | |
ema_transformer3d = EMAModel(ema_transformer3d.parameters(), model_cls=CogVideoXTransformer3DModel, model_config=ema_transformer3d.config) | |
# `accelerate` 0.16.0 will have better support for customized saving | |
if version.parse(accelerate.__version__) >= version.parse("0.16.0"): | |
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format | |
def save_model_hook(models, weights, output_dir): | |
if accelerator.is_main_process: | |
if args.use_ema: | |
ema_transformer3d.save_pretrained(os.path.join(output_dir, "transformer_ema")) | |
models[0].save_pretrained(os.path.join(output_dir, "transformer")) | |
if not args.use_deepspeed: | |
weights.pop() | |
with open(os.path.join(output_dir, "sampler_pos_start.pkl"), 'wb') as file: | |
pickle.dump([batch_sampler.sampler._pos_start, first_epoch], file) | |
def load_model_hook(models, input_dir): | |
if args.use_ema: | |
ema_path = os.path.join(input_dir, "transformer_ema") | |
_, ema_kwargs = CogVideoXTransformer3DModel.load_config(ema_path, return_unused_kwargs=True) | |
load_model = CogVideoXTransformer3DModel.from_pretrained_2d( | |
input_dir, subfolder="transformer_ema" | |
) | |
load_model = EMAModel(load_model.parameters(), model_cls=CogVideoXTransformer3DModel, model_config=load_model.config) | |
load_model.load_state_dict(ema_kwargs) | |
ema_transformer3d.load_state_dict(load_model.state_dict()) | |
ema_transformer3d.to(accelerator.device) | |
del load_model | |
for i in range(len(models)): | |
# pop models so that they are not loaded again | |
model = models.pop() | |
# load diffusers style into model | |
load_model = CogVideoXTransformer3DModel.from_pretrained_2d( | |
input_dir, subfolder="transformer" | |
) | |
model.register_to_config(**load_model.config) | |
model.load_state_dict(load_model.state_dict()) | |
del load_model | |
pkl_path = os.path.join(input_dir, "sampler_pos_start.pkl") | |
if os.path.exists(pkl_path): | |
with open(pkl_path, 'rb') as file: | |
loaded_number, _ = pickle.load(file) | |
batch_sampler.sampler._pos_start = max(loaded_number - args.dataloader_num_workers * accelerator.num_processes * 2, 0) | |
print(f"Load pkl from {pkl_path}. Get loaded_number = {loaded_number}.") | |
accelerator.register_save_state_pre_hook(save_model_hook) | |
accelerator.register_load_state_pre_hook(load_model_hook) | |
if args.gradient_checkpointing: | |
transformer3d.enable_gradient_checkpointing() | |
# Enable TF32 for faster training on Ampere GPUs, | |
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
if args.allow_tf32: | |
torch.backends.cuda.matmul.allow_tf32 = True | |
if args.scale_lr: | |
args.learning_rate = ( | |
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
) | |
# Initialize the optimizer | |
if args.use_8bit_adam: | |
try: | |
import bitsandbytes as bnb | |
except ImportError: | |
raise ImportError( | |
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" | |
) | |
optimizer_cls = bnb.optim.AdamW8bit | |
elif args.use_came: | |
try: | |
from came_pytorch import CAME | |
except: | |
raise ImportError( | |
"Please install came_pytorch to use CAME. You can do so by running `pip install came_pytorch`" | |
) | |
optimizer_cls = CAME | |
else: | |
optimizer_cls = torch.optim.AdamW | |
trainable_params = list(filter(lambda p: p.requires_grad, transformer3d.parameters())) | |
trainable_params_optim = [ | |
{'params': [], 'lr': args.learning_rate}, | |
{'params': [], 'lr': args.learning_rate / 2}, | |
] | |
in_already = [] | |
for name, param in transformer3d.named_parameters(): | |
high_lr_flag = False | |
if name in in_already: | |
continue | |
for trainable_module_name in args.trainable_modules: | |
if trainable_module_name in name: | |
in_already.append(name) | |
high_lr_flag = True | |
trainable_params_optim[0]['params'].append(param) | |
if accelerator.is_main_process: | |
print(f"Set {name} to lr : {args.learning_rate}") | |
break | |
if high_lr_flag: | |
continue | |
for trainable_module_name in args.trainable_modules_low_learning_rate: | |
if trainable_module_name in name: | |
in_already.append(name) | |
trainable_params_optim[1]['params'].append(param) | |
if accelerator.is_main_process: | |
print(f"Set {name} to lr : {args.learning_rate / 2}") | |
break | |
if args.use_came: | |
optimizer = optimizer_cls( | |
trainable_params_optim, | |
lr=args.learning_rate, | |
# weight_decay=args.adam_weight_decay, | |
betas=(0.9, 0.999, 0.9999), | |
eps=(1e-30, 1e-16) | |
) | |
else: | |
optimizer = optimizer_cls( | |
trainable_params_optim, | |
lr=args.learning_rate, | |
betas=(args.adam_beta1, args.adam_beta2), | |
weight_decay=args.adam_weight_decay, | |
eps=args.adam_epsilon, | |
) | |
# Get the training dataset | |
sample_n_frames_bucket_interval = 4 | |
train_dataset = ImageVideoControlDataset( | |
args.train_data_meta, args.train_data_dir, | |
video_sample_size=args.video_sample_size, video_sample_stride=args.video_sample_stride, video_sample_n_frames=args.video_sample_n_frames, | |
video_repeat=args.video_repeat, | |
image_sample_size=args.image_sample_size, | |
enable_bucket=args.enable_bucket, enable_inpaint=False, | |
) | |
if args.enable_bucket: | |
aspect_ratio_sample_size = {key : [x / 512 * args.video_sample_size for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()} | |
aspect_ratio_random_crop_sample_size = {key : [x / 512 * args.video_sample_size for x in ASPECT_RATIO_RANDOM_CROP_512[key]] for key in ASPECT_RATIO_RANDOM_CROP_512.keys()} | |
batch_sampler_generator = torch.Generator().manual_seed(args.seed) | |
batch_sampler = AspectRatioBatchImageVideoSampler( | |
sampler=RandomSampler(train_dataset, generator=batch_sampler_generator), dataset=train_dataset.dataset, | |
batch_size=args.train_batch_size, train_folder = args.train_data_dir, drop_last=True, | |
aspect_ratios=aspect_ratio_sample_size, | |
) | |
if args.keep_all_node_same_token_length: | |
if args.token_sample_size > 256: | |
numbers_list = list(range(256, args.token_sample_size + 1, 128)) | |
if numbers_list[-1] != args.token_sample_size: | |
numbers_list.append(args.token_sample_size) | |
else: | |
numbers_list = [256] | |
numbers_list = [_number * _number * args.video_sample_n_frames for _number in numbers_list] | |
else: | |
numbers_list = None | |
def get_length_to_frame_num(token_length): | |
if args.image_sample_size > args.video_sample_size: | |
sample_sizes = list(range(256, args.image_sample_size + 1, 128)) | |
if sample_sizes[-1] != args.image_sample_size: | |
sample_sizes.append(args.image_sample_size) | |
else: | |
sample_sizes = [256] | |
length_to_frame_num = { | |
sample_size: min(token_length / sample_size / sample_size, args.video_sample_n_frames) // sample_n_frames_bucket_interval * sample_n_frames_bucket_interval + 1 for sample_size in sample_sizes | |
} | |
return length_to_frame_num | |
def collate_fn(examples): | |
target_token_length = args.video_sample_n_frames * args.token_sample_size * args.token_sample_size | |
length_to_frame_num = get_length_to_frame_num( | |
target_token_length, | |
) | |
# Create new output | |
new_examples = {} | |
new_examples["target_token_length"] = target_token_length | |
new_examples["pixel_values"] = [] | |
new_examples["text"] = [] | |
new_examples["control_pixel_values"] = [] | |
# Get ratio | |
pixel_value = examples[0]["pixel_values"] | |
data_type = examples[0]["data_type"] | |
f, h, w, c = np.shape(pixel_value) | |
if data_type == 'image': | |
random_downsample_ratio = 1 if not args.random_hw_adapt else get_random_downsample_ratio(args.image_sample_size, image_ratio=[args.image_sample_size / args.video_sample_size], rng=rng) | |
aspect_ratio_sample_size = {key : [x / 512 * args.image_sample_size / random_downsample_ratio for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()} | |
aspect_ratio_random_crop_sample_size = {key : [x / 512 * args.image_sample_size / random_downsample_ratio for x in ASPECT_RATIO_RANDOM_CROP_512[key]] for key in ASPECT_RATIO_RANDOM_CROP_512.keys()} | |
batch_video_length = args.video_sample_n_frames + sample_n_frames_bucket_interval | |
else: | |
if args.random_hw_adapt: | |
if args.training_with_video_token_length: | |
local_min_size = np.min(np.array([np.mean(np.array([np.shape(example["pixel_values"])[1], np.shape(example["pixel_values"])[2]])) for example in examples])) | |
choice_list = [length for length in list(length_to_frame_num.keys()) if length < local_min_size * 1.25] | |
if len(choice_list) == 0: | |
choice_list = list(length_to_frame_num.keys()) | |
if rng is None: | |
local_video_sample_size = np.random.choice(choice_list) | |
else: | |
local_video_sample_size = rng.choice(choice_list) | |
batch_video_length = length_to_frame_num[local_video_sample_size] | |
random_downsample_ratio = args.video_sample_size / local_video_sample_size | |
else: | |
random_downsample_ratio = get_random_downsample_ratio( | |
args.video_sample_size, rng=rng) | |
batch_video_length = args.video_sample_n_frames + sample_n_frames_bucket_interval | |
else: | |
random_downsample_ratio = 1 | |
batch_video_length = args.video_sample_n_frames + sample_n_frames_bucket_interval | |
aspect_ratio_sample_size = {key : [x / 512 * args.video_sample_size / random_downsample_ratio for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()} | |
aspect_ratio_random_crop_sample_size = {key : [x / 512 * args.video_sample_size / random_downsample_ratio for x in ASPECT_RATIO_RANDOM_CROP_512[key]] for key in ASPECT_RATIO_RANDOM_CROP_512.keys()} | |
closest_size, closest_ratio = get_closest_ratio(h, w, ratios=aspect_ratio_sample_size) | |
closest_size = [int(x / 16) * 16 for x in closest_size] | |
if args.random_ratio_crop: | |
if rng is None: | |
random_sample_size = aspect_ratio_random_crop_sample_size[ | |
np.random.choice(list(aspect_ratio_random_crop_sample_size.keys()), p = ASPECT_RATIO_RANDOM_CROP_PROB) | |
] | |
else: | |
random_sample_size = aspect_ratio_random_crop_sample_size[ | |
rng.choice(list(aspect_ratio_random_crop_sample_size.keys()), p = ASPECT_RATIO_RANDOM_CROP_PROB) | |
] | |
random_sample_size = [int(x / 16) * 16 for x in random_sample_size] | |
for example in examples: | |
if args.random_ratio_crop: | |
pixel_values = torch.from_numpy(example["pixel_values"]).permute(0, 3, 1, 2).contiguous() | |
pixel_values = pixel_values / 255. | |
control_pixel_values = torch.from_numpy(example["control_pixel_values"]).permute(0, 3, 1, 2).contiguous() | |
control_pixel_values = control_pixel_values / 255. | |
# Get adapt hw for resize | |
b, c, h, w = pixel_values.size() | |
th, tw = random_sample_size | |
if th / tw > h / w: | |
nh = int(th) | |
nw = int(w / h * nh) | |
else: | |
nw = int(tw) | |
nh = int(h / w * nw) | |
transform = transforms.Compose([ | |
transforms.Resize([nh, nw]), | |
transforms.CenterCrop([int(x) for x in random_sample_size]), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), | |
]) | |
else: | |
closest_size = list(map(lambda x: int(x), closest_size)) | |
if closest_size[0] / h > closest_size[1] / w: | |
resize_size = closest_size[0], int(w * closest_size[0] / h) | |
else: | |
resize_size = int(h * closest_size[1] / w), closest_size[1] | |
pixel_values = torch.from_numpy(example["pixel_values"]).permute(0, 3, 1, 2).contiguous() | |
pixel_values = pixel_values / 255. | |
control_pixel_values = torch.from_numpy(example["control_pixel_values"]).permute(0, 3, 1, 2).contiguous() | |
control_pixel_values = control_pixel_values / 255. | |
transform = transforms.Compose([ | |
transforms.Resize(resize_size, interpolation=transforms.InterpolationMode.BILINEAR), # Image.BICUBIC | |
transforms.CenterCrop(closest_size), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), | |
]) | |
new_examples["pixel_values"].append(transform(pixel_values)) | |
new_examples["control_pixel_values"].append(transform(control_pixel_values)) | |
new_examples["text"].append(example["text"]) | |
batch_video_length = int( | |
min( | |
batch_video_length, | |
(len(pixel_values) - 1) // sample_n_frames_bucket_interval * sample_n_frames_bucket_interval + 1, | |
) | |
) | |
if batch_video_length == 0: | |
batch_video_length = 1 | |
new_examples["pixel_values"] = torch.stack([example[:batch_video_length] for example in new_examples["pixel_values"]]) | |
new_examples["control_pixel_values"] = torch.stack([example[:batch_video_length] for example in new_examples["control_pixel_values"]]) | |
if args.enable_text_encoder_in_dataloader: | |
prompt_ids = tokenizer( | |
new_examples['text'], | |
max_length=args.tokenizer_max_length, | |
padding="max_length", | |
add_special_tokens=True, | |
truncation=True, | |
return_tensors="pt" | |
) | |
encoder_hidden_states = text_encoder( | |
prompt_ids.input_ids, | |
return_dict=False | |
)[0] | |
new_examples['encoder_attention_mask'] = prompt_ids.attention_mask | |
new_examples['encoder_hidden_states'] = encoder_hidden_states | |
return new_examples | |
# DataLoaders creation: | |
train_dataloader = torch.utils.data.DataLoader( | |
train_dataset, | |
batch_sampler=batch_sampler, | |
collate_fn=collate_fn, | |
persistent_workers=True if args.dataloader_num_workers != 0 else False, | |
num_workers=args.dataloader_num_workers, | |
) | |
else: | |
# DataLoaders creation: | |
batch_sampler_generator = torch.Generator().manual_seed(args.seed) | |
batch_sampler = ImageVideoSampler(RandomSampler(train_dataset, generator=batch_sampler_generator), train_dataset, args.train_batch_size) | |
train_dataloader = torch.utils.data.DataLoader( | |
train_dataset, | |
batch_sampler=batch_sampler, | |
persistent_workers=True if args.dataloader_num_workers != 0 else False, | |
num_workers=args.dataloader_num_workers, | |
) | |
# Scheduler and math around the number of training steps. | |
overrode_max_train_steps = False | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if args.max_train_steps is None: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
overrode_max_train_steps = True | |
lr_scheduler = get_scheduler( | |
args.lr_scheduler, | |
optimizer=optimizer, | |
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, | |
num_training_steps=args.max_train_steps * accelerator.num_processes, | |
) | |
# Prepare everything with our `accelerator`. | |
transformer3d, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
transformer3d, optimizer, train_dataloader, lr_scheduler | |
) | |
if args.use_ema: | |
ema_transformer3d.to(accelerator.device) | |
# Move text_encode and vae to gpu and cast to weight_dtype | |
vae.to(accelerator.device, dtype=weight_dtype) | |
if not args.enable_text_encoder_in_dataloader: | |
text_encoder.to(accelerator.device) | |
# We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
if overrode_max_train_steps: | |
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
# Afterwards we recalculate our number of training epochs | |
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
# We need to initialize the trackers we use, and also store our configuration. | |
# The trackers initializes automatically on the main process. | |
if accelerator.is_main_process: | |
tracker_config = dict(vars(args)) | |
tracker_config.pop("validation_prompts") | |
tracker_config.pop("validation_paths") | |
tracker_config.pop("trainable_modules") | |
tracker_config.pop("trainable_modules_low_learning_rate") | |
accelerator.init_trackers(args.tracker_project_name, tracker_config) | |
# Function for unwrapping if model was compiled with `torch.compile`. | |
def unwrap_model(model): | |
model = accelerator.unwrap_model(model) | |
model = model._orig_mod if is_compiled_module(model) else model | |
return model | |
# Train! | |
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {len(train_dataset)}") | |
logger.info(f" Num Epochs = {args.num_train_epochs}") | |
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
logger.info(f" Total optimization steps = {args.max_train_steps}") | |
global_step = 0 | |
first_epoch = 0 | |
# Potentially load in the weights and states from a previous save | |
if args.resume_from_checkpoint: | |
if args.resume_from_checkpoint != "latest": | |
path = os.path.basename(args.resume_from_checkpoint) | |
else: | |
# Get the most recent checkpoint | |
dirs = os.listdir(args.output_dir) | |
dirs = [d for d in dirs if d.startswith("checkpoint")] | |
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
path = dirs[-1] if len(dirs) > 0 else None | |
if path is None: | |
accelerator.print( | |
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
) | |
args.resume_from_checkpoint = None | |
initial_global_step = 0 | |
else: | |
global_step = int(path.split("-")[1]) | |
initial_global_step = global_step | |
pkl_path = os.path.join(os.path.join(args.output_dir, path), "sampler_pos_start.pkl") | |
if os.path.exists(pkl_path): | |
with open(pkl_path, 'rb') as file: | |
_, first_epoch = pickle.load(file) | |
else: | |
first_epoch = global_step // num_update_steps_per_epoch | |
print(f"Load pkl from {pkl_path}. Get first_epoch = {first_epoch}.") | |
accelerator.print(f"Resuming from checkpoint {path}") | |
accelerator.load_state(os.path.join(args.output_dir, path)) | |
else: | |
initial_global_step = 0 | |
progress_bar = tqdm( | |
range(0, args.max_train_steps), | |
initial=initial_global_step, | |
desc="Steps", | |
# Only show the progress bar once on each machine. | |
disable=not accelerator.is_local_main_process, | |
) | |
if args.multi_stream: | |
# create extra cuda streams to speedup inpaint vae computation | |
vae_stream_1 = torch.cuda.Stream() | |
vae_stream_2 = torch.cuda.Stream() | |
else: | |
vae_stream_1 = None | |
vae_stream_2 = None | |
for epoch in range(first_epoch, args.num_train_epochs): | |
train_loss = 0.0 | |
batch_sampler.sampler.generator = torch.Generator().manual_seed(args.seed + epoch) | |
for step, batch in enumerate(train_dataloader): | |
# Data batch sanity check | |
if epoch == first_epoch and step == 0: | |
pixel_values, texts = batch['pixel_values'].cpu(), batch['text'] | |
pixel_values = rearrange(pixel_values, "b f c h w -> b c f h w") | |
os.makedirs(os.path.join(args.output_dir, "sanity_check"), exist_ok=True) | |
for idx, (pixel_value, text) in enumerate(zip(pixel_values, texts)): | |
pixel_value = pixel_value[None, ...] | |
gif_name = '-'.join(text.replace('/', '').split()[:10]) if not text == '' else f'{global_step}-{idx}' | |
save_videos_grid(pixel_value, f"{args.output_dir}/sanity_check/{gif_name[:10]}.gif", rescale=True) | |
with accelerator.accumulate(transformer3d): | |
# Convert images to latent space | |
pixel_values = batch["pixel_values"].to(weight_dtype) | |
control_pixel_values = batch["control_pixel_values"].to(weight_dtype) | |
if args.training_with_video_token_length: | |
if args.video_sample_n_frames * args.token_sample_size * args.token_sample_size // 16 >= pixel_values.size()[1] * pixel_values.size()[3] * pixel_values.size()[4]: | |
pixel_values = torch.tile(pixel_values, (4, 1, 1, 1, 1)) | |
control_pixel_values = torch.tile(control_pixel_values, (4, 1, 1, 1, 1)) | |
if args.enable_text_encoder_in_dataloader: | |
batch['encoder_hidden_states'] = torch.tile(batch['encoder_hidden_states'], (4, 1, 1)) | |
batch['encoder_attention_mask'] = torch.tile(batch['encoder_attention_mask'], (4, 1)) | |
else: | |
batch['text'] = batch['text'] * 4 | |
elif args.video_sample_n_frames * args.token_sample_size * args.token_sample_size // 4 >= pixel_values.size()[1] * pixel_values.size()[3] * pixel_values.size()[4]: | |
pixel_values = torch.tile(pixel_values, (2, 1, 1, 1, 1)) | |
control_pixel_values = torch.tile(control_pixel_values, (2, 1, 1, 1, 1)) | |
if args.enable_text_encoder_in_dataloader: | |
batch['encoder_hidden_states'] = torch.tile(batch['encoder_hidden_states'], (2, 1, 1)) | |
batch['encoder_attention_mask'] = torch.tile(batch['encoder_attention_mask'], (2, 1)) | |
else: | |
batch['text'] = batch['text'] * 2 | |
def create_special_list(length): | |
if length == 1: | |
return [1.0] | |
if length >= 2: | |
last_element = 0.90 | |
remaining_sum = 1.0 - last_element | |
other_elements_value = remaining_sum / (length - 1) | |
special_list = [other_elements_value] * (length - 1) + [last_element] | |
return special_list | |
if args.keep_all_node_same_token_length: | |
actual_token_length = index_rng.choice(numbers_list) | |
actual_video_length = (min( | |
actual_token_length / pixel_values.size()[-1] / pixel_values.size()[-2], args.video_sample_n_frames | |
) - 1) // sample_n_frames_bucket_interval * sample_n_frames_bucket_interval + 1 | |
actual_video_length = int(max(actual_video_length, 1)) | |
else: | |
actual_video_length = None | |
if args.random_frame_crop: | |
select_frames = [_tmp for _tmp in list(range(sample_n_frames_bucket_interval + 1, args.video_sample_n_frames + sample_n_frames_bucket_interval, sample_n_frames_bucket_interval))] | |
select_frames_prob = np.array(create_special_list(len(select_frames))) | |
if rng is None: | |
temp_n_frames = np.random.choice(select_frames, p = select_frames_prob) | |
else: | |
temp_n_frames = rng.choice(select_frames, p = select_frames_prob) | |
if args.keep_all_node_same_token_length: | |
temp_n_frames = min(actual_video_length, temp_n_frames) | |
pixel_values = pixel_values[:, :temp_n_frames, :, :] | |
control_pixel_values = control_pixel_values[:, :temp_n_frames, :, :] | |
if args.low_vram: | |
torch.cuda.empty_cache() | |
vae.to(accelerator.device) | |
if not args.enable_text_encoder_in_dataloader: | |
text_encoder.to(accelerator.device) | |
with torch.no_grad(): | |
# This way is quicker when batch grows up | |
def _slice_vae(pixel_values): | |
pixel_values = rearrange(pixel_values, "b f c h w -> b c f h w") | |
bs = args.vae_mini_batch | |
new_pixel_values = [] | |
for i in range(0, pixel_values.shape[0], bs): | |
pixel_values_bs = pixel_values[i : i + bs] | |
pixel_values_bs = vae.encode(pixel_values_bs)[0] | |
pixel_values_bs = pixel_values_bs.sample() | |
new_pixel_values.append(pixel_values_bs) | |
vae._clear_fake_context_parallel_cache() | |
return torch.cat(new_pixel_values, dim = 0) | |
if vae_stream_1 is not None: | |
vae_stream_1.wait_stream(torch.cuda.current_stream()) | |
with torch.cuda.stream(vae_stream_1): | |
latents = _slice_vae(pixel_values) | |
else: | |
latents = _slice_vae(pixel_values) | |
latents = latents * vae.config.scaling_factor | |
control_latents = _slice_vae(control_pixel_values) | |
control_latents = control_latents * vae.config.scaling_factor | |
control_latents = rearrange(control_latents, "b c f h w -> b f c h w") | |
latents = rearrange(latents, "b c f h w -> b f c h w") | |
# wait for latents = vae.encode(pixel_values) to complete | |
if vae_stream_1 is not None: | |
torch.cuda.current_stream().wait_stream(vae_stream_1) | |
if args.low_vram: | |
vae.to('cpu') | |
torch.cuda.empty_cache() | |
if not args.enable_text_encoder_in_dataloader: | |
text_encoder.to(accelerator.device) | |
if args.enable_text_encoder_in_dataloader: | |
prompt_embeds = batch['encoder_hidden_states'].to(device=latents.device) | |
else: | |
with torch.no_grad(): | |
prompt_ids = tokenizer( | |
batch['text'], | |
max_length=args.tokenizer_max_length, | |
padding="max_length", | |
add_special_tokens=True, | |
truncation=True, | |
return_tensors="pt" | |
) | |
prompt_embeds = text_encoder( | |
prompt_ids.input_ids.to(latents.device), | |
return_dict=False | |
)[0] | |
if args.low_vram and not args.enable_text_encoder_in_dataloader: | |
text_encoder.to('cpu') | |
torch.cuda.empty_cache() | |
bsz = latents.shape[0] | |
noise = torch.randn(latents.size(), device=latents.device, generator=torch_rng, dtype=weight_dtype) | |
# Sample a random timestep for each image | |
# timesteps = generate_timestep_with_lognorm(0, args.train_sampling_steps, (bsz,), device=latents.device, generator=torch_rng) | |
timesteps = torch.randint(0, args.train_sampling_steps, (bsz,), device=latents.device, generator=torch_rng) | |
timesteps = timesteps.long() | |
# Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid | |
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height): | |
tw = tgt_width | |
th = tgt_height | |
h, w = src | |
r = h / w | |
if r > (th / tw): | |
resize_height = th | |
resize_width = int(round(th / h * w)) | |
else: | |
resize_width = tw | |
resize_height = int(round(tw / w * h)) | |
crop_top = int(round((th - resize_height) / 2.0)) | |
crop_left = int(round((tw - resize_width) / 2.0)) | |
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) | |
def _prepare_rotary_positional_embeddings( | |
height: int, | |
width: int, | |
num_frames: int, | |
device: torch.device | |
): | |
vae_scale_factor_spatial = ( | |
2 ** (len(vae.config.block_out_channels) - 1) if vae is not None else 8 | |
) | |
grid_height = height // (vae_scale_factor_spatial * unwrap_model(transformer3d).config.patch_size) | |
grid_width = width // (vae_scale_factor_spatial * unwrap_model(transformer3d).config.patch_size) | |
base_size_width = 720 // (vae_scale_factor_spatial * unwrap_model(transformer3d).config.patch_size) | |
base_size_height = 480 // (vae_scale_factor_spatial * unwrap_model(transformer3d).config.patch_size) | |
grid_crops_coords = get_resize_crop_region_for_grid( | |
(grid_height, grid_width), base_size_width, base_size_height | |
) | |
freqs_cos, freqs_sin = get_3d_rotary_pos_embed( | |
embed_dim=unwrap_model(transformer3d).config.attention_head_dim, | |
crops_coords=grid_crops_coords, | |
grid_size=(grid_height, grid_width), | |
temporal_size=num_frames, | |
use_real=True, | |
) | |
freqs_cos = freqs_cos.to(device=device) | |
freqs_sin = freqs_sin.to(device=device) | |
return freqs_cos, freqs_sin | |
height, width = batch["pixel_values"].size()[-2], batch["pixel_values"].size()[-1] | |
# 7. Create rotary embeds if required | |
image_rotary_emb = ( | |
_prepare_rotary_positional_embeddings(height, width, latents.size(1), latents.device) | |
if unwrap_model(transformer3d).config.use_rotary_positional_embeddings | |
else None | |
) | |
prompt_embeds = prompt_embeds.to(device=latents.device) | |
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | |
if noise_scheduler.config.prediction_type == "epsilon": | |
target = noise | |
elif noise_scheduler.config.prediction_type == "v_prediction": | |
target = noise_scheduler.get_velocity(latents, noise, timesteps) | |
else: | |
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | |
# predict the noise residual | |
noise_pred = transformer3d( | |
hidden_states=noisy_latents, | |
encoder_hidden_states=prompt_embeds, | |
timestep=timesteps, | |
image_rotary_emb=image_rotary_emb, | |
return_dict=False, | |
control_latents=control_latents, | |
)[0] | |
print(noise_pred.size(), noisy_latents.size(), latents.size(), pixel_values.size()) | |
loss = F.mse_loss(noise_pred.float(), target.float(), reduction="mean") | |
if args.motion_sub_loss and noise_pred.size()[1] > 2: | |
gt_sub_noise = noise_pred[:, 1:, :].float() - noise_pred[:, :-1, :].float() | |
pre_sub_noise = target[:, 1:, :].float() - target[:, :-1, :].float() | |
sub_loss = F.mse_loss(gt_sub_noise, pre_sub_noise, reduction="mean") | |
loss = loss * (1 - args.motion_sub_loss_ratio) + sub_loss * args.motion_sub_loss_ratio | |
# Gather the losses across all processes for logging (if we use distributed training). | |
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() | |
train_loss += avg_loss.item() / args.gradient_accumulation_steps | |
# Backpropagate | |
accelerator.backward(loss) | |
if accelerator.sync_gradients: | |
if not args.use_deepspeed: | |
trainable_params_grads = [p.grad for p in trainable_params if p.grad is not None] | |
trainable_params_total_norm = torch.norm(torch.stack([torch.norm(g.detach(), 2) for g in trainable_params_grads]), 2) | |
max_grad_norm = linear_decay(args.max_grad_norm * args.initial_grad_norm_ratio, args.max_grad_norm, args.abnormal_norm_clip_start, global_step) | |
if trainable_params_total_norm / max_grad_norm > 5 and global_step > args.abnormal_norm_clip_start: | |
actual_max_grad_norm = max_grad_norm / min((trainable_params_total_norm / max_grad_norm), 10) | |
else: | |
actual_max_grad_norm = max_grad_norm | |
else: | |
actual_max_grad_norm = args.max_grad_norm | |
if not args.use_deepspeed and args.report_model_info and accelerator.is_main_process: | |
if trainable_params_total_norm > 1 and global_step > args.abnormal_norm_clip_start: | |
for name, param in transformer3d.named_parameters(): | |
if param.requires_grad: | |
writer.add_scalar(f'gradients/before_clip_norm/{name}', param.grad.norm(), global_step=global_step) | |
norm_sum = accelerator.clip_grad_norm_(trainable_params, actual_max_grad_norm) | |
if not args.use_deepspeed and args.report_model_info and accelerator.is_main_process: | |
writer.add_scalar(f'gradients/norm_sum', norm_sum, global_step=global_step) | |
writer.add_scalar(f'gradients/actual_max_grad_norm', actual_max_grad_norm, global_step=global_step) | |
optimizer.step() | |
lr_scheduler.step() | |
optimizer.zero_grad() | |
# Checks if the accelerator has performed an optimization step behind the scenes | |
if accelerator.sync_gradients: | |
if args.use_ema: | |
ema_transformer3d.step(transformer3d.parameters()) | |
progress_bar.update(1) | |
global_step += 1 | |
accelerator.log({"train_loss": train_loss}, step=global_step) | |
train_loss = 0.0 | |
if global_step % args.checkpointing_steps == 0: | |
if args.use_deepspeed or accelerator.is_main_process: | |
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
if args.checkpoints_total_limit is not None: | |
checkpoints = os.listdir(args.output_dir) | |
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
if len(checkpoints) >= args.checkpoints_total_limit: | |
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
removing_checkpoints = checkpoints[0:num_to_remove] | |
logger.info( | |
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
) | |
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
for removing_checkpoint in removing_checkpoints: | |
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
shutil.rmtree(removing_checkpoint) | |
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
accelerator.save_state(save_path) | |
logger.info(f"Saved state to {save_path}") | |
if accelerator.is_main_process: | |
if args.validation_prompts is not None and global_step % args.validation_steps == 0: | |
if args.use_ema: | |
# Store the UNet parameters temporarily and load the EMA parameters to perform inference. | |
ema_transformer3d.store(transformer3d.parameters()) | |
ema_transformer3d.copy_to(transformer3d.parameters()) | |
log_validation( | |
vae, | |
text_encoder, | |
tokenizer, | |
transformer3d, | |
args, | |
accelerator, | |
weight_dtype, | |
global_step, | |
) | |
if args.use_ema: | |
# Switch back to the original transformer3d parameters. | |
ema_transformer3d.restore(transformer3d.parameters()) | |
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
progress_bar.set_postfix(**logs) | |
if global_step >= args.max_train_steps: | |
break | |
if accelerator.is_main_process: | |
if args.validation_prompts is not None and epoch % args.validation_epochs == 0: | |
if args.use_ema: | |
# Store the UNet parameters temporarily and load the EMA parameters to perform inference. | |
ema_transformer3d.store(transformer3d.parameters()) | |
ema_transformer3d.copy_to(transformer3d.parameters()) | |
log_validation( | |
vae, | |
text_encoder, | |
tokenizer, | |
transformer3d, | |
args, | |
accelerator, | |
weight_dtype, | |
global_step, | |
) | |
if args.use_ema: | |
# Switch back to the original transformer3d parameters. | |
ema_transformer3d.restore(transformer3d.parameters()) | |
# Create the pipeline using the trained modules and save it. | |
accelerator.wait_for_everyone() | |
if accelerator.is_main_process: | |
transformer3d = unwrap_model(transformer3d) | |
if args.use_ema: | |
ema_transformer3d.copy_to(transformer3d.parameters()) | |
if args.use_deepspeed or accelerator.is_main_process: | |
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
accelerator.save_state(save_path) | |
logger.info(f"Saved state to {save_path}") | |
accelerator.end_training() | |
if __name__ == "__main__": | |
main() | |