|
from transformers import CLIPImageProcessor, pipeline, CLIPTokenizer, AutoModel |
|
import torchvision.transforms as T |
|
import torch.nn.functional as F |
|
from PIL import Image, ImageFile |
|
import requests |
|
import torch |
|
import numpy as np |
|
import gradio as gr |
|
import spaces |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
model_name_or_path = "BAAI/EVA-CLIP-8B" |
|
|
|
processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14") |
|
|
|
model = AutoModel.from_pretrained( |
|
model_name_or_path, |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True).to(device).eval() |
|
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained(model_name_or_path) |
|
|
|
|
|
clip_checkpoint = "openai/clip-vit-base-patch16" |
|
clip_detector = pipeline(model=clip_checkpoint, task="zero-shot-image-classification", device=device) |
|
|
|
|
|
def infer_evaclip(image, captions): |
|
captions = captions.split(",") |
|
input_ids = tokenizer(captions, return_tensors="pt", padding=True).input_ids.to(device) |
|
input_pixels = processor(images=image, return_tensors="pt", padding=True).pixel_values.to(device) |
|
|
|
|
|
with torch.no_grad(), torch.cuda.amp.autocast(): |
|
image_features = model.encode_image(input_pixels) |
|
text_features = model.encode_text(input_ids) |
|
image_features /= image_features.norm(dim=-1, keepdim=True) |
|
text_features /= text_features.norm(dim=-1, keepdim=True) |
|
|
|
label_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) |
|
label_probs = label_probs.cpu().numpy().tolist()[0] |
|
print(captions) |
|
print(label_probs) |
|
return {captions[i]: label_probs[i] for i in range(len(captions))} |
|
|
|
def clip_inference(image, labels): |
|
candidate_labels = [label.lstrip(" ") for label in labels.split(",")] |
|
clip_out = clip_detector(image, candidate_labels=candidate_labels) |
|
return {out["label"]: float(out["score"]) for out in clip_out} |
|
|
|
@spaces.GPU |
|
def infer(image, labels): |
|
clip_out = clip_inference(image, labels) |
|
evaclip_out = infer_evaclip(image, labels) |
|
|
|
return clip_out, evaclip_out |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# EVACLIP vs CLIP π₯ ") |
|
gr.Markdown("[EVACLIP](https://huggingface.co/BAAI/EVA-CLIP-8B) is CLIP scaled to the moon! π₯") |
|
gr.Markdown("It's a state-of-the-art zero-shot image classification model, which is also outperforming predecessors on text-image retrieval and linear probing.") |
|
gr.Markdown("In this demo, compare EVACLIP outputs to CLIP outputs β¨") |
|
with gr.Row(): |
|
with gr.Column(): |
|
image_input = gr.Image(type="pil") |
|
text_input = gr.Textbox(label="Input a list of labels") |
|
run_button = gr.Button("Run", visible=True) |
|
|
|
with gr.Column(): |
|
clip_output = gr.Label(label = "CLIP Output", num_top_classes=3) |
|
evaclip_output = gr.Label(label = "EVA-CLIP Output", num_top_classes=3) |
|
|
|
examples = [["./cat.png", "cat on a table, cat on a tree"]] |
|
gr.Examples( |
|
examples = examples, |
|
inputs=[image_input, text_input], |
|
outputs=[clip_output, |
|
evaclip_output], |
|
fn=infer, |
|
cache_examples=True |
|
) |
|
run_button.click(fn=infer, |
|
inputs=[image_input, text_input], |
|
outputs=[clip_output, |
|
evaclip_output]) |
|
|
|
demo.launch() |