Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -15,8 +15,9 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
15 |
|
16 |
@spaces.GPU
|
17 |
def udop_box_inference(image, text_prompt, box_coordinates):
|
18 |
-
|
19 |
-
|
|
|
20 |
extracted_image = extract_box(image, box_coordinates)
|
21 |
extracted_image.save("cropped_image.png")
|
22 |
|
@@ -50,6 +51,11 @@ def normalize_bbox(bbox, width, height):
|
|
50 |
|
51 |
|
52 |
def extract_box(image, coordinates):
|
|
|
|
|
|
|
|
|
|
|
53 |
x, y, x2, y2 = coordinates
|
54 |
cropped_image = image.crop((x, y, x2, y2))
|
55 |
return cropped_image
|
@@ -61,9 +67,10 @@ def infer_box(prompts, text_prompts):
|
|
61 |
image = prompts["image"]
|
62 |
if image is None:
|
63 |
gr.Error("Please upload an image and draw a box before submitting")
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
67 |
return udop_box_inference(image, text_prompts, points)
|
68 |
|
69 |
|
@@ -80,7 +87,16 @@ with gr.Blocks(title="UDOP") as demo:
|
|
80 |
with gr.Column():
|
81 |
output = gr.Textbox(label="UDOP Output")
|
82 |
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
btn.click(infer_box, inputs=[im,text_prompt], outputs=[output])
|
85 |
|
86 |
demo.launch(debug=True)
|
|
|
15 |
|
16 |
@spaces.GPU
|
17 |
def udop_box_inference(image, text_prompt, box_coordinates):
|
18 |
+
if box_coordinates != []:
|
19 |
+
box_coordinates = [box_coordinates[0], box_coordinates[1], box_coordinates[3], box_coordinates[4]]
|
20 |
+
|
21 |
extracted_image = extract_box(image, box_coordinates)
|
22 |
extracted_image.save("cropped_image.png")
|
23 |
|
|
|
51 |
|
52 |
|
53 |
def extract_box(image, coordinates):
|
54 |
+
if type(image) == str:
|
55 |
+
image = Image.open(image)
|
56 |
+
if coordinates==[]:
|
57 |
+
return image
|
58 |
+
else:
|
59 |
x, y, x2, y2 = coordinates
|
60 |
cropped_image = image.crop((x, y, x2, y2))
|
61 |
return cropped_image
|
|
|
67 |
image = prompts["image"]
|
68 |
if image is None:
|
69 |
gr.Error("Please upload an image and draw a box before submitting")
|
70 |
+
try:
|
71 |
+
points = prompts["points"][0]
|
72 |
+
except:
|
73 |
+
points = []
|
74 |
return udop_box_inference(image, text_prompts, points)
|
75 |
|
76 |
|
|
|
87 |
with gr.Column():
|
88 |
output = gr.Textbox(label="UDOP Output")
|
89 |
|
90 |
+
with gr.Row():
|
91 |
+
gr.Examples(
|
92 |
+
examples = [[PromptValue(image = "/content/dummy_pdf.png",
|
93 |
+
points = [[87.0, 908.0, 2.0, 456.0, 972.0, 3.0]]), "Question answering. What is the objective?"],
|
94 |
+
[PromptValue(image = "/content/docvqa_example (3).png",
|
95 |
+
points = [[]]), "Question answering. How much is the total?"]],
|
96 |
+
inputs=[im, text_prompt],
|
97 |
+
outputs=output,
|
98 |
+
fn=infer_box,
|
99 |
+
)
|
100 |
btn.click(infer_box, inputs=[im,text_prompt], outputs=[output])
|
101 |
|
102 |
demo.launch(debug=True)
|