merve's picture
merve HF staff
Update app.py
6068e79
import torch
from transformers import pipeline, SiglipModel, AutoProcessor
import numpy as np
import gradio as gr
siglip_checkpoint = "nielsr/siglip-base-patch16-224"
clip_checkpoint = "openai/clip-vit-base-patch16"
clip_detector = pipeline(model=clip_checkpoint, task="zero-shot-image-classification")
siglip_model = SiglipModel.from_pretrained("google/siglip-base-patch16-224")
siglip_processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
def postprocess(output):
return {out["label"]: float(out["score"]) for out in output}
def postprocess_siglip(output, labels):
return {labels[i]: float(np.array(output[0])[i]) for i in range(len(labels))}
def siglip_detector(image, texts):
inputs = siglip_processor(text=texts, images=image, return_tensors="pt",
padding="max_length")
with torch.no_grad():
outputs = siglip_model(**inputs)
logits_per_image = outputs.logits_per_image
probs = torch.sigmoid(logits_per_image)
return probs
def infer(image, candidate_labels):
candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",")]
siglip_out = siglip_detector(image, candidate_labels)
clip_out = clip_detector(image, candidate_labels=candidate_labels)
return postprocess(clip_out), postprocess_siglip(siglip_out, labels=candidate_labels)
with gr.Blocks() as demo:
gr.Markdown("# Compare CLIP and SigLIP")
gr.Markdown("Compare the performance of CLIP and SigLIP on zero-shot classification in this Space πŸ‘‡")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil")
text_input = gr.Textbox(label="Input a list of labels")
run_button = gr.Button("Run", visible=True)
with gr.Column():
clip_output = gr.Label(label = "CLIP Output", num_top_classes=3)
siglip_output = gr.Label(label = "SigLIP Output", num_top_classes=3)
examples = [["./baklava.jpg", "baklava, souffle, tiramisu"]]
gr.Examples(
examples = examples,
inputs=[image_input, text_input],
outputs=[clip_output,
siglip_output
],
fn=infer,
cache_examples=True
)
run_button.click(fn=infer,
inputs=[image_input, text_input],
outputs=[clip_output,
siglip_output
])
demo.launch()