Spaces:
Runtime error
Runtime error
File size: 1,433 Bytes
81d10ae 0361028 81d10ae 4d5842c 81d10ae 0361028 4d5842c 81d10ae 4d5842c 81d10ae 0361028 129db67 0361028 509cbdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import gradio as gr
from transformers import pipeline
import torch
import numpy as np
from PIL import Image
import gradio as gr
from gradio_client import Client
import os
import spaces
import json
dpt_beit = pipeline(task = "depth-estimation", model="Intel/dpt-beit-base-384")
depth_anything = pipeline(task = "depth-estimation", model="nielsr/depth-anything-small")
dpt_large = pipeline(task = "depth-estimation", model="intel/dpt-large")
@spaces.GPU
def depth_anything_inference(image_path):
return depth_anything(image_path)["depth"]
@spaces.GPU
def dpt_beit_inference(image):
return dpt_beit(image)["depth"]
@spaces.GPU
def dpt_large_inference(image):
return dpt_large(image)["depth"]
def infer(image):
return dpt_large_inference(image), dpt_beit_inference(image), depth_anything_inference(image)
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1><center>Compare Depth Estimation Models<center><h1>")
with gr.Column():
with gr.Row():
input_img = gr.Image(label="Input Image")
with gr.Row():
output_1 = gr.Image(type="pil", label="DPT-Large")
output_2 = gr.Image(type="pil", label="DPT with BeiT Backbone")
output_3 = gr.Image(type="pil", label="Depth Anything")
input_img.change(infer, [input_img], [output_1, output_2, output_3])
demo.launch(debug=True) |